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Abstract: The growing impacts of climate change have adversely affected smallholder farmers
across the world, leading to low output, decreased incomes, and high levels of food insecurity.
As a result, farmers have been advised to find alternative ways of dealing with this phenomenon.
The low adoption of climate-smart irrigation technology in Botswana warrants an investigation
into the factors and the impact of adoption. This study used a semi-structured questionnaire to
collect data from 271 smallholder maize farmers, who were selected through a multi-stage sampling
approach. Descriptive statistics, probit regression, and propensity score matching technique (PSM)
were employed to analyze the data. The results revealed that the majority of the respondents (55%)
were male and 62% of farmers were above 50 years. The majority (62%) of the participants had a farm
size of less than 5 ha and were heavily reliant on family labour for farm operations. Despite high (66%)
awareness of climate-smart irrigation technology, many (52%) farmers did not adopt smart irrigation
in Botswana. Age, gender, and access to credit had a statistical and negative influence on adoption.
However, level of education and farming experience had a positive influence on adoption. The
result of the propensity score matching model indicated that farmers using climate-smart irrigation
techniques experienced positive and significant improvement in crop yield compared to dryland
farmers. The study recommends that relevant institutions in Botswana should design a strategy that
will be tailored to addressing issues of access to credit, facilitate training and education on advanced
irrigation methods, and encourage more young farmers to engage in farming activities.

Keywords: adoption; climate-smart agriculture; climate-smart irrigation; PSM model; ATT; Botswana

1. Introduction

Climate change is emerging as an unprecedented threat to global agriculture. In Africa
and other developing countries, where agriculture is the main livelihood of most of the
population, the impacts are dire because agriculture in these regions heavily relies on
rain-fed systems [1–3]. Consequently, shifts in climate patterns pose significant risk to both
food production and security [4]. Studies highlight the detrimental impacts of climate
change on agriculture, including reduced crop yields, increased vulnerability to diseases
and more frequent extreme weather events [4]. Addressing these challenges is critical in
ensuring food security and agricultural sustainability.

To mitigate the impacts of climate change, there has been growing emphasis on adopt-
ing climate-smart agriculture (CSA) strategies [5]. Among these, climate-smart irrigation
(CSIT) has garnered significant attention worldwide. Climate-smart irrigation encom-
passes sustainable and adaptive approaches to agricultural water management designed
to improve water-use efficiency, improve production and minimize the impact of climate
change [6]. Consequently, significant advancements have been made in irrigation systems,
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which researchers are continuously exploring. Climate-smart irrigation strategies empower
smallholder farmers to enhance, automate, and optimize traditional agricultural practices,
leading to improved agricultural productivity and a more streamlined farming system [7].
The implementation of smart irrigation systems such as drip irrigation can significantly
reduce the total amount of water required to produce field crops. Empirical evidence
suggests that automated drip irrigation system can save 26% more water and enhance
high crop productivity compared to traditional irrigation methods [8]. Additionally, Yang
et al. [9] reported that during water shortage, drip irrigation not only saves water but it
also maintains crop yields better compared to other types of irrigation methods.

Despite the potential benefits of climate-smart irrigation technology, its adoption
remains low among smallholders in many developing countries [10–12]. Botswana serves
as notable example of this trend. In this country, the majority of economically disadvan-
taged rural communities are directly or indirectly involved in crop production, which
is crucial for poverty alleviation, employment, and income generation. However, crop
production in Botswana is highly vulnerable to climate-related shocks, with rising temper-
atures and erratic rainfall patterns threatening crop productivity, household income and
food security [13]. Therefore, policies that boost and improve irrigation management and
encourage the adoption of climate-smart irrigation technology should be considered [14].
Considering this, since independence the government has implemented several policies
and support programmes to guide, boost, and improve the production and productivity
of various agricultural sub-sectors [15], which include arable agricultural programmes
such as the Integrated Support Programme for Arable Agriculture Development (ISPAAD)
and the Arable Land Development Programme (ALDEP). However, these policies did not
improve the nation’s food security situation, so the Ministry of Agriculture (MoA) of the
Government of Botswana created a new initiative called the Temo Letlotlo Programme and
Horticulture Impact Accelerator Subsidy (IAS) fund. Despite the increasing recognition of
climate change’s impact on agriculture in Botswana, all these programmes fail to encour-
age smallholder crop farmers to adopt climate-smart irrigation strategies directly. Hence,
this paper investigates the drivers of climate-smart irrigation adoption and its impacts in
this context.

2. Conceptual Framework on the Adoption of Climate-Smart Irrigation Technology

The conceptual framework of this study, as illustrated in Figure 1 below, has four main
components. The first components is climate change and its vulnerability. Second, there is
the adaptation process to mitigate climate change and vulnerability, which is CSIT; third is
the determinant of the CSIT. The last component is the outcome of the adoption decision in
terms of crop yield and the income of the farmers.

Climate change leads to climate vulnerabilities, such as droughts, dry spells, and
irregular rainfall, leading to shortage of agricultural water that adversely affects crop yield.
Without interventions, many rural farmers are at a risk of losing their livelihoods due to
the devastating effects of climate change [16]. Climate-smart irrigation technologies (CSIT)
enhance smallholder farmers’ resilience to climate change [17] as a sustainable and adaptive
solution for agricultural water management. The main objective of CSIT is to increase
crop yield and enhance farms’ income [18] by mitigating climate risks and ensuring the
availability of sufficient water for agricultural production. Therefore, the farmers who
decided to adopt CSIT improved their crop productivity and farm income. In contrast, if
farmers prefer either not to adopt CSIT, or to adopt a traditional way of watering, then
CSIT may increase the risks and expose their crops to extreme weather, which may have
adverse impacts on farm income through reducing per-crop yields or crop loss. Figure 1
shows the relationship between the variables discussed.
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Figure 1. Conceptual framework of climate-smart technology adoption by smallholder farmers.
Source: Adapted and modified from Abegunde, Melusi and Obi, 2019 [2].

3. Methodology
3.1. Description of Study Area

Botswana is a landlocked country primarily characterized by the Kalahari Desert,
which stretches west of the eastern hardveld and covers 84% of the country. The country
is situated between longitudes 20 and 30 degrees east of Greenwich, and latitudes ap-
proximately 18 and 27 degrees south of the Equator [19]. Botswana is one of the smallest
countries on the African continent and is home to 2.7 million people. It shares borders
with South Africa to the South and East, Namibia to the West, and Zimbabwe to the East.
According to World Bank [20]. Botswana is one of the most unequal countries in the world.
Botswana is divided into 10 districts, each with its own unique characteristics and cultural
heritage. The study was conducted only in the five districts in Botswana, namely Central,
Kgatleng, South-East, Southern and Kweneng, and these areas were randomly chosen.

The central district at 24.0480◦ S, 26.7747◦ E latitude and longitude is sandveld, with a
mean annual rainfall of 350 mm and high temperatures exceeding 35 ◦C [21]. The south-
east district experiences a blend of average winter temperatures, rainfall, and summer
temperatures; with a mean annual rainfall of 450 mm and high temperatures of 32 ◦C [22].
The Southern district at 25.0559◦ S, 26.0121◦ E latitude and longitude experiences highly
variable rainfall patterns, averaging about 450 mm annually [23]. During the summer
season, the district experiences average daily high temperatures of 32 ◦C. Kweneng and
Kgatleng districts in Botswana have contrasting climates. Deep Kalahari sandy soils
primarily cover Kweneng, while Kgatleng has loamy clay soil. The semi-arid climate has
annual rainfall ranging from 350 to 600 mm, with mean daily temperatures ranging from
25 ◦C to 32.6 ◦C. Kgatleng experiences annual rainfall between 450 and 550 mm, with
winter temperatures ranging from 6 ◦C to 20 ◦C [24]. As a result of these climate conditions,
crops grown in Botswana include maize, wheat, sunflower, and groundnuts. In addition,
the country is also known for citrus, cotton, and dairy products.
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3.2. Sampling Procedure, Sample Size, and Data Collection

The study utilized cross-sectional survey data from smallholder maize farmers in
Botswana, who were selected using a multi-stage sampling approach. The study used
primary and secondary data. Primary data from 271 smallholder maize farmers from
five districts in Botswana were collected using a structured questionnaire from December
2023 to January 2024. The survey questionnaire was developed in English and Setswana,
and included a broad array of information, encompassing demographic, social-economic,
farm, and institutional characteristics that affect the adoption of new technology. Trained
research assistants, who were knowledgeable about the rural farming system and proficient
about in the local language, administered the questionnaire to prevent misinterpretations
or misunderstanding of words or questions. The survey collection tool was administered
to 10 respondents prior to the actual data collection to assess its validity and reliability. The
unit of analysis for this study was farmers. Additionally, secondary data were obtained
from government documents, peer-reviewed journals, and books.

3.3. Data Analysis

Following the collection of primary data from smallholder farmers, the information
was coded, cleaned, and organized into a Microsoft Excel spreadsheet. Subsequently, the
coded data were imported from an MS Excel (365 MSO version 2409) spreadsheet to STATA
version 13 for analysis. This study employed descriptive statistics, probit regression, and
propensity score matching to analyze the data. The details of how the analytical tools were
applied is provided below.

3.3.1. Descriptive Statistics

The study employed descriptive statistics to characterize the demographic, socio-
economic and institutional attributes of smallholder maize farmers in the study area. Tools
for descriptive statistics included frequency tables for categorical variables and calculation
of average mean, maximum, minimum, and standard deviation for continuous variables.

3.3.2. Propensity Score Matching Model (PSM)

Propensity score matching (PSM) is a non-experimental method for causal inference
that aims to equate the treatment groups by balancing them on confounding factors to
make them comparable [25]. The model is designed to reduce self-selection bias caused
by observable features, by pairing a group that participates in adoption activities with a
group that does not share similar observable traits [26]. As a result, it helps to minimize
the potential bias that can come from differences in individual characteristics between the
treated and untreated groups. Propensity score matching involves linking individuals
in the treatment group with individuals in the control group based on their estimated
likelihood of being in the treatment group determined by their observable features. As
the name suggests, propensity score matching computes the propensity scores for each
observation through a first-stage regression analysis, employing either a probit or a logistic
regression model. These scores reflect each farmer’s likelihood of adopting CSIT. The
propensity score (p-score) generated from the probit in the first-stage regression ranges
from 0 to 1. A score closer to 1 indicates a higher likelihood of adopting CSIT practices,
while a score closer to 0 suggests a lower likelihood. This estimated propensity score on the
treated (ATT), matched treated, and non-treated farming households were calculated using
probit regression in the first stage and was used to estimate the average treatment effect
in the third stage of PSM. In the second stage, two balanced groups were created based
on their estimated propensity score. This study employed various matching methods,
including kernel matching, nearest neighbour matching, and radius matching, to achieve
balance between the groups.
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3.3.3. Probit Regression Model

Smallholder households in Botswana often operate under uncertainty, impacting
their capacity to produce agricultural products effectively. As a result, the probit model
assumes that smallholder farmers make adoption decisions with a goal of maximizing
their utility [27]. The theoretical framework of the probit model is grounded in random
utility theory (RUT). In this context, let U0 represent the expected benefits from non-
adoption, and Uj denote the expected benefits from adopting CSIT. According to the RUT,
a farmer i chooses to adopt CSIT, if the expected benefit from adoption surpass those from
non-adoption [28,29]. The utility functions for adoption and non-adoption are defined
as follows:

Ui1 = β1Xi + εi1 (for Adoption) (1)

Ui0 = β0Xi + εi0 (for Non-Adoption) (2)

The decision-making framework can be expressed as follows:

yi =

{
1 i f ui ≥ 0
0 i f ui < 0

(3)

The probability of a smallholder farmer i’s decision to adopt CSIT is determined by
the utility of that alternative compared to the utility of the current alternative (Ui1 > Ui0).
Therefore, for the smallholder farmer i, the probability of adoption is indicated by:

P (y1) = P (Ui1 > Ui0) (4)

P (y1) = P (β1Xi + εi1 > β0Xi + εi0) (5)

P (y1) = P (εi1 − εi0 < β1Xi − β0Xi) (6)

P (y1) = P (εi < βXi) (7)

P (1) = F (βXi) (8)

where, Ui1 = the utility derived from the technology by a farmer from the CSIT; Ui0 = the
absence of utility obtained from CSIT; P (1) = probability of adopting CSIT technology; β0
to β1 = estimated parameters; Xi = independent variables; F = is the cumulative distribution
function of the standard normal distribution. εi = disturbance term.

3.3.4. Average Treatment Effect on the Treated (ATT)

In the third stage of the propensity score matching model, the average outcomes for
the two groups were estimated. The estimated impacts of CSIT interventions are determined
by calculating the difference in average outcomes between the group that adopted CSIT
practices and the group that did not implement CSIT interventions. This difference is
referred to as the PSM estimator of average treatment effect on the treated households
(ATT), represented as follows:

ATT = E{Y1i − Y0i|Ai = 1} (9)

= E E{Y1i − Y0i|Ai = 1, p(Xi)} (10)

= E [E{Y1i|Ai = 1,p(Xi)} − E{Y0i|Ai = 0, p(Xi)}|Ai = 1 (11)

where y1 and y0 represent the outcomes for households that have adopted CSIT practices
and the controlled group, respectively. Ai = 1 indicates adoption of CSIT, and Ai = 0 refers to
comparison group does not. Table 1 presents a summary of the explanatory variables used
in this study, specifying the measurement type and outlining the theoretical relationship
posited between these variables and the dependent variable studied. Data collection for
this study was conducted from December 2023 to January 2024.
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Table 1. Explanatory variables used in the probit model and their expected outcome.

Variable Name Type of Measurement Prior Expectations

Adoption (Yes/No) Dependent variable

Gender of HH Farmer’s sex (female = 0; male = 1) (Dummy) +

Marital status Marital status of the farmer (single =
0;married, divorced, widowed = 1) (Dummy) +/−

Age of a farmer Actual number in years (Continuous) +

Education Level of education (Categorial) +

Labour Availability of labour (Continuous) +/−

Household size Total number of individuals living in a
unit (Continuous) +

Farming Experience Number of years in farming (Continuous) +/−
Land tenure The type of land ownership (Categorical) +

Land size Number of hectares that each household
owns (Continuous) +/−

Access to credit If a farmer has access or not (Yes = 1; No = 0)
(Dummy) +

Frequency of
extension visits

Measures how often farmers receive visits
from extension officers (Continuous) +

Main occupation Measured the main occupation of the
farmers (Categorical) −

Access to electricity If a farmer has access or not (Yes = 1; No = 0)
(Dummy) +

Districts Different districts in which the farmers come
from (Categorical) +/−

+/− represents the direction of influence (either positive or negative) Source: Author, 2024.

4. Results and Discussion
4.1. Demographic and Socio-Economic Profile of the Smallholder Maize Farmers in Botswana

The demographic and socio-economic characteristics of farmers were assessed using a
structured interview process. Information was gathered from the farming household heads,
who provided the required information on behalf of their families. Key characteristics
assessed included age, gender, level of education, marital status, household size, and
involvement in off-farm activities, among others. As presented in Table 2, the sample
consisted of both those who adopted and those who did not adopt climate-smart irrigation
technology. Based on the results from the survey, 48% of the respondents are those who
adopted improved irrigation methods as a mechanism to cope with the changes in climatic
conditions, while 52% selected for study relied on rainfed systems for farming. More than
half of the respondents’ reliance on rainfed agriculture highlights a potential vulnerability.
Furthermore, these farmers face increased risks of crop failure due to insufficient rainfall.

Gender is a very crucial aspect in a household for decision-making, especially in rural
areas [30]. Table 2 indicates that the study participants were dominated by males (55%)
rather than females (45%). This finding is a clear indication that agriculture in Botswana
is still a male-dominated activity, with females participating in non-agricultural activities.
The findings of this study are consistent with those of Gayo [31]. This indicates that farming
households are predominantly male due to the physically demanding nature of farming.
Additionally, in many African cultures, men are typically responsible for farming, while
women often handle household chores.
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Table 2. Socio-economic and demographic profile of sampled farmers in Botswana.

Variable Frequency (n) Percentage (%)

Gender

Male 150 55.35

Female 121 44.65

Marital status

Single 150 55.35

Married 121 44.65

Adoption status

Adopters 131 48.34

Non-adopters 140 51.66

Land tenure

Own 182 67.16

Lease 89 32.84

Level of education

No education 47 17.34

Primary education 62 22.88

Secondary education 80 29.52

Tertiary education 43 15.87

Others 39 14.39

Access to credit

Yes 24 8.86

No 247 91.14

Mean Max Min SD

Age 50.981 74 23 12.394

Household size 4.40 10 1 2.31

Farm size 1.811 9 1 1.436

Farming experience 3.394 6 1 1.294

Income 577 35,325 157 4723
Abbreviations: Max, Min, and SD; maximum, minimum, and standard deviation Source: Survey data (2024).

Descriptive statistics reveal that only 45% of farmers were married, and 55% were sin-
gle (Table 2). The result also indicated that 31.37% of the farmers were above 60 years, and
30.26% were in the age range from 51 to 60 years; meaning that only 20% of the population
were in younger age groups (below 40 years), and around 62% of the respondents were
aged above 50 years. This means that many farmers in Botswana are well experienced in
farming (see Table 2), although older farmers will negatively impact on the supply of family
labour force and agricultural production. In addition, older farmers with many years of
experience are not always willing to abandon old tactics in favour of new ones, while young
farmers are more flexible. Therefore, there is a need to encourage youth participation in
agriculture to improve the adoption of climate-smart irrigation practices. This argument is
supported by many scholars, such as Ruiz Salvago et al. [32] and Alrawashdeh et al. [33] to
mention a few. Furthermore, the study demonstrated that a greater proportion (36.53%)
of the respondents have 31 to 40 years of farming experience, and only 8.12% have fewer
than 5 years of experience. These statistics imply that the respondents have many years of
farming experience.
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The farmers were also queried about their educational levels; classified as formal
versus no formal education. The results presented in Table 2 show that a total of 17.34%
of farmers had no formal education, while 22.88% had completed primary education.
Interestingly, 29.52% of farmers had secondary education, and 15.87% had acquired tertiary
qualifications. The statistics confirm that a greater proportion of the respondents (69.74%)
possess a lower level of education. Level of education has a direct influence on the adoption
of sustainable irrigation practices, leading to crop productivity. This was confirmed by
Das, AB and Sahoo, D [34]. The findings show that the highest percentage (72%) of farmers
belongs to a family with a maximum of five members, and 28% of the respondents had
6 to 10 members in the family. An increase in the number of households may lead to the
adoption of more intensive and sustainable agricultural irrigation practices due to the
increase in demand for food. Contrary to that, other studies have found that larger farm
households are more likely to use labour-intensive agricultural practices due to insufficient
labour supply [35]. However, the reality is that with smart irrigation, no or less human
involvement is required [36].

Off-farm activities are “dummy variable”, showing whether the household head
participates in off-farm activities or not. It is expected to impact adoption positively as
engaging in off-farm activities can solve liquidity problems [37]. Approximately 46.86%
of the respondents reported participating in off-farm activities, primarily due to low
agricultural income and the seasonal nature of jobs in the agricultural sector [38].

Farmers were engaged in different income-generating activities such as engaging in
small businesses selling vegetables, and other types off-farm activities such as “Ipelegeng”
which is a short-term employment support scheme in Botswana by the government. The
majority of the respondents (83.39%) considered farming as the main source of income,
while only 16.61% reported their main source of income as coming from business and other
types of employment. Access to and ownership of land is an important factor in farming.
A total of 67.16% of farmers reported that they cultivated their own farm, while the rest
(32.84%) were either renting or leasing the land.

4.2. Determinants of Climate-Smart Irrigation Technology

To investigate the research question regarding the adoption of climate-smart irrigation
technology, a probit regression model was applied, with the results summarized in Table 3.
The probit model indicate that various socio-economic and institutional factors influenced
the adoption of climate-smart irrigation technology at different levels. Among the fourteen
variables that were included in the model, seven were found to significantly influence the
adoption of climate smart-irrigation technology. The model’s performance is evidenced
by the value of Pseudo R2 of 67%, the log-likelihood of −59.79 and an LR Chi2 that is
significant at 5% level, demonstrating a good fit to the data. Additionally, the model
showed no multicollinearity issues because it had a low average variance inflation factor
(VIF) of 1.54.

The probit model regression results reveal that age was significant at the 1% level
and negatively influenced farmers’ decision to adopt irrigation technology. Specifically, an
increase of one year in farmers’ age is associated with a 9% decrease in their likelihood of
adopting climate-smart irrigation technology. This negative relationship is corroborated by
studies from Van der Berg [39], Lebeta [40]. Kurgat et al. [41], and Aryal et al. [42]. This
indicates that older farmers are generally reluctant to adopt new innovations. Addition-
ally, household size negatively impacted the decision to adopt climate-smart irrigation
technology, with a significant level of 10%. This suggests that, as a family size increases,
the likelihood of adopting climate-smart irrigation technology increases by 20%. Farming
experience was found to have negative and significant effect on adopting climate-smart
irrigation technology with a significance level of 1%. This finding is supported by research
from Serote et al. [43] and Tanti [44]. The negative relationship suggests that, as farm-
ing experience increases, the likelihood of adopting climate-smart irrigation technology
decreases. This trend may be attributed to older farmers, who typically possess more
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experience but are less willing to take risks associated with investing in new irrigation tech-
nologies due to their shorter planning horizon [45,46]. Land Tenure (land tenure = −0.726)
negatively and significantly impacts the adoption at 1%. The negative coefficient suggests
that the probability of adoption decreases by 10% for those who use their own property.
This may be because those who use leased property are more serious about maximizing
productivity within a limited timeframe compared to those who own land. On contrary
to that Maíra [47], Wondmu [48] and Schuck, et al. [49] reported that an enterprises with
the most owned land are most likely to invest in more efficient irrigation systems during
severe droughts. Gender significantly influences farmers’ decision to adopt climate-smart
irrigation technology at the 5% level, with the probability of males adopting this technology
increasing by 44% compared to females. This finding is consistent with that of Abdul-
kareem and Azahinli [50], reflecting cultural biases that grant men exclusive rights to make
farm decisions regarding short-term and long-term adjustments [43]. Level of education
(Education = 0.075) is significant at 1% and directly impacts farmers’ awareness and un-
derstanding of improved irrigation techniques. Those with higher education levels are
generally more informed about the benefits and operations of advanced irrigation systems.
Conversely, lower educational attainment can lead to misconceptions about these technolo-
gies or a lack of confidence in using them effectively. Supporting this view, Schultz [51], Ali
and Byerlee [52], and Hojo [53] reinforced the notion that education enhances a farmer’s
capacity to respond swiftly and efficiently to technological changes. The availability of
labour (Labour = 0.2633) is regarded as an important factor that influences technology
adoption among smallholder farmers; this is confirmed by Adeoti [54], Feder et al. [55],
Quan and Doluschitz [56], and the availability of labour directly impacts a farmer’s ability
to implement and maintain an irrigation system. Access to credit positively influences the
likelihood of farmers adopting climate-smart irrigation technology as anticipated. This
finding is consistent with Yohannes’ [57] study, which demonstrated that credit access
enhances farmers’ financial capacity to invest in modern farming technologies.

Table 3. Estimating the determinants of CSIT adoption by maize farmers using probit regression.

Adoption Coef. Std.Err Z p > |Z|

Maritalstatus 0.0535 0.19099 0.28 0.779

Gender 0.4493 ** 0.19538 2.30 0.021

Age −0.2851 *** 0.09660 −2.95 0.003

Education 0.0752 *** 0.02053 3.67 0.000

Labour 0.2633 *** 0.07674 3.43 0.001

HHsize −0.3355 * 0.20117 −1.67 0.095

Farm_Exp −0.3105 *** 0.07649 −4.06 0.000

Land tenure −0.7267 *** 0.21526 −3.38 0.001

Access_credit 0.4126 0.34399 1.20 0.230

-cons 1.262 0.57478 2.20 0.028

Number of obs = 269
LR chi2(9) = 134.21
Prob > chi2= 0.0000
Pseudo R2 = 0.3603
Log Likelihood = −119.12591

* Significant at 10%, ** significant at 5%,and *** significant at 1%. Source: Survey data (2024).

4.3. Impact of Climate-Smart Irrigation Technology (CSIT)

The impact of climate-smart irrigation technology (CSIT) was assessed by compar-
ing the differences in “Gross Production” and in “Gross Value” between those who have
adopted the CSIT and those who have not. This evaluation was performed using the propen-
sity score matching model and the average treatment effect on the treated (ATT) analysis.
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4.3.1. Estimation of Propensity Score

The impact of adopting climate-smart irrigation technology on “Gross Production”
and “Gross Value” was estimated using the propensity score matching (PSM) method,
implemented through the Pscore and PSMatch2 commands in STATA version 15.1. The
propensity score indicates the likelihood of receiving a treatment based on observed factors.
Researchers can build comparable treatment and control groups by matching people who
have similar propensity scores.

4.3.2. Matching Effect Analysis

The effectiveness of propensity score matching approach relies on two requirements;
namely, (i) the balancing test and (ii) the common support test. Rosenbaum [58] examined
the balance of the covariate between the treated and the controlled groups both before and
after matching using the standardized bias as a measure. The success of the balance is
determined by the percentage reduction in covariates bias and the changes in t-statistical
significance levels before and after matching [59]. The balancing test requires that after
matching, there are no systematic differences in covariates between the treated and non-
treated groups. As shown in Table 3, after matching, the standardized bias of all covariates
were fewer below 5%, and most control variables were significant before matching. Addi-
tionally, the p-values of the t-statistics of all control variables were greater than 5% after
matching, indicating that these variables are negligible after matching. This suggest that
the matching process effectively reduces disparities in the distribution of explanatory vari-
ables between the control group and the treatment groups. Furthermore, the pseudo R2

decreased after matching, indicating that the differences in controlled variables between
the treated and untreated groups have been minimized. A lower psuedo R2 value suggests
that the treatment and control groups became more comparable after matching for the
variables and reduced the risk of confounding bias (see Table 4). Overall, these results
affirm the quality of the matching.

Table 4. Balance test results of propensity score matching (PSM).

Variable Unmatched
Matched

Mean
Treated Control %bas %Reduced

|bias|
t-Test

t P > |t|

Marital
Status

U
M

0.4651 0.4214 8.8
7.0

20.2
0.72 0.473

0.4651 0.4302 0.56 0.575

Gender U
M

0.6589 0.4642 39.9
1.9

95.2
3.26 0.001

0.6589 0.6495 0.16 0.874

Age U
M

2.2636 3.1357 −81.7
−0.7 99.2

−6.70 0.000
2.2636 2.2709 −0.05 0.959

Education U
M

12.07 7.0429 102.0
3.1

97.0
8.31 0.000

12.07 11.917 0.30 0.265

Labour U
M

1.845 1.0786 61.4
−25.0 59.3

5.05 0.000
1.845 2.157 −1.61 0.109

Hhsize U
M

1.2636 1.3429 −16.6
−24.8

−48.5
−1.36 0.174

1.2636 1.3813 −2.02 0.044

Farm_Exp U
M

2.938 3.8143 −71.7
−33.4 53.4

−5.89 0.000
2.938 3.346 −2.48 0.014

Landtenure U
M

0.51938 0.82143 −67.6
12.5

81.4
−5.57 0.000

0.51938 0.46335 0.90 0.370

Access_Credit U
M

0.14729 0.03571 39.3
−6.6 83.3

3.26 0.001
0.4729 0.16594 −0.41 0.682
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Table 4. Cont.

Variable Unmatched
Matched

Mean
Treated Control %bas %Reduced

|bias|
t-Test

t P > |t|

Sample Ps R2 LR chi2 p > chi2 MeanBias MedBias B R %var

Unmatched
Matched

0.360
0.046

134.21
16.54

0.000
0.056

54.3
12.8

61.4
7.0

165.5 *
51.3 *

0.89
1.40

20
20

Source: Survey data (2024).

4.3.3. An Average Treatment Effect on the Treated (ATT) Analysis

Once the propensity scores have been estimated, the next step is to conduct an average
treatment effect on the treated (ATT) analysis. This analysis focuses specifically on eval-
uating the impact of the treatment, which is the adoption of CSIT, on those smallholder
maize farmers who actually participated in it. We estimated the impact of CSIT on gross
production and gross value using three comparison techniques: Nearest neighbour (NN)
matching, radius matching, and kernel matching and Bootstrap standard errors are used
to make estimations. The estimations from all matching methods showed that CSIT had a
favourable and significant influence on maize production in the treated groups.

As shown in Table 5, in the case of gross production, the average treatment effect
on treated (ATT) ranges from 650 kg to 2489 kg per hectare of land, whereas the average
treatment effect of CSIT on gross value ranges between BWP 1186 to 2944. Therefore, the
study found that the adoption of CSIT has a significant relationship with gross production
and gross value, which determines the farm income of the farmers.

Table 5. Average treatment effect of CSIT on gross production and gross value.

NN Matching Kernel Matching Radius Matching

ATT 2489 *** 650 *** 938 ***

SE 551 178 198

ATT 1186 *** 2039 *** 2944 ***

SE 711 409 623
Source: Survey data (2024). *** significant at 1%.

5. Conclusions and Recommendations

Climate-smart irrigation technology has attracted substantial interest due to the in-
crease in demand for enhanced water usage efficiency. Smart irrigation may conserve
irrigation water and boost production at the farm level, thus contributing to better food
security for the needy and household income for smallholder farmers.

This study mainly investigated the adoption and effectiveness of climate-smart irriga-
tion technology among smallholder farmers in Botswana. The findings from descriptive
statistics highlighted the ageing farming population, male domination and educational bar-
riers. Additionally, the findings show that adoption of climate-smart irrigation technology
is still low in Botswana. The results of the probit model indicated that age, household size,
farm experience, and land tenure negatively and significantly impacted on the adoption
decision, meaning that all these factors lower the probability of adopting CSIT among the
smallholder maize farmers in Botswana, as expected. In contrast, gender, education, labour
force, and access to credit lead to an increase in the likelihood of adoption among the
farmers. Other variables such as marriage status, land tenure, frequency of extension visits,
access to credit and region were insignificant in the adoption of climate-smart irrigation
technology. While these factors were not significant drivers of adoption, they may be crucial
in understanding the broader context of Botswana’s farming sector. Further studies may
reveal new insights regarding these issues. using propensity score matching model (PSM)
and average treatment effect on the treated (ATT), the results show that the adoption of
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CSIT is economically and financially viable, pro-poor, and can mitigate the adverse effects
of climate change on maize production in Botswana. Given the findings above, the study
recommends the following regarding the adoption of climate-smart irrigation technology:

- The concerned institutions in Botswana should work to improve access to credit
for farmers;

- Support should be strengthened to facilitate training and improve the educational
attainment of farmers for farmers, to understand better the potential the benefits of
adopting climate-smart irrigation technology;

- Encourage more young farmers to engage in farming activities and ensure frequent
extension services to encourage irrigation farming;

- Gender-sensitive programmes that address unequal access to resources such as land
should be prioritized.
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