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Abstract

Globally, the significant risk to food safety and public health posed by antimicrobial-resistant food-

borne Salmonella pathogens is driven by the utilization of in-feed antibiotics, with variations in

usage across poultry production systems. The current study investigated the occurrence of viru-

lence, antimicrobial resistant profiles, and biofilm-forming potentials of Salmonella isolates

sourced from different chicken types. A total of 75 cloacal faecal samples were collected using

sterile swabs from layer, broiler, and indigenous chickens across 15 poultry farms (five farms per

chicken type). The samples were analysed for the presence of Salmonella spp. using species-

specific PCR analysis. Out of the 150 presumptive isolates, a large proportion (82; 55%) were

confirmed as Salmonella species, comprising the serovars S. typhimurium (49%) and S. enteriti-

dis (30%) while 21% were uncategorised. Based on phenotypic antibiotic susceptibility test, the

Salmonella isolates were most often resistant to erythromycin (62%), tetracycline (59%), and tri-

methoprim (32%). The dominant multiple antibiotic resistance phenotypes were SXT-W-TE

(16%), E-W-TE (10%), AML-E-TE (10%), E-SXT-W-TE (13%), and AMP-AML-E-SXT-W-TE

(10%). Genotypic assessment of antibiotic resistance genes revealed that isolates harboured the

ant (52%), tet (A) (46%), sui1 (13%), sui2 (14%), and tet (B) (9%) determinants. Major virulence

genes comprising the invasion gene spiC, the SPI-3 encoded protein (misL) that is associated

with the establishment of chronic infections and host specificity as well as the SPI-4 encoded orfL

that facilitates adhesion, autotransportation and colonisation were detected in 26%, 16%, and

14% of the isolates respectively. There was no significant difference on the proportion of Salmo-

nella species and the occurrence of virulence and antimicrobial resistance determinants among

Salmonella isolates obtained from different chicken types. In addition, neither the chicken type

nor incubation temperature influenced the potential of the Salmonella isolates to form biofilms,

although a large proportion (62%) exhibited weak to strong biofilm-forming potentials. Moderate

to high proportions of antimicrobial resistant pathogenic Salmonella serovars were detected in

the study but these did not vary with poultry production systems.
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1. Introduction

The soaring demand for poultry products has seen production methods shift from extensive to

intensive techniques to maximise bird productivity [1]. However, intensive production sys-

tems are highly stressful environments that compromise bird immune function resulting in

high incidences of disease and poor growth performance. To mitigate the negative impacts of

stress and infectious diseases, producers have traditionally relied on the use of antibiotics for

growth promotion and therapeutic processes [2]. Unfortunately, the extensive use of antimi-

crobial agents contributes to the emergence of antimicrobial resistance [3], which threatens

poultry production, food safety, and public health [4].

Antimicrobial resistance (AMR) has been reported in Salmonella species, thus contributing a

significant risk to food safety and public health globally [5]. The most prevalent zoonotic Salmo-
nella serotypes, comprise Salmonella enterica serotype Enteritidis and Salmonella enterica sero-

type Typhimurium, and these are responsible for salmonellosis in humans and animals [6].

While some Salmonella serotypes cause self-limiting gastroenteritis in humans, resistant cells

most often are associated with more complicated infections, which are challenging to treat espe-

cially in vulnerable groups such as children [7], the elderly, and immunocompromised individ-

uals [8]. Although it is generally accepted that Salmonella species occur in the gastrointestinal

tract of chickens [9], investigations into the influence of poultry production systems and associ-

ated husbandry practices on their prevalence are rather limited. Several studies conducted on

Salmonella species in poultry from the study area focused on the prevalence of virulent and

AMR Salmonella serovars [10–12], with no consideration of the influence of poultry production

systems and management practices. The prevalence and distribution of AMR pathogens in

chicken vary with management practices and biosecurity standards across different poultry pro-

duction systems [13]. Indeed, antimicrobial resistance has been reported to occur less in free-

range extensive or semi-intensive rearing systems compared to conventional production sys-

tems [14]. In addition, broilers tend to harbor more antibiotic-resistant bacteria compared to

layers, which is attributed to the reduced use of antibiotics in the latter [15]. This suggests that

the occurrence of AMR in indigenous chickens could be even lower than in broilers and layers

because antibiotics are rarely used for native birds reared in free-range extensive production

systems [16]. However, indirect transmission of antibiotic resistance among livestock animals,

including indigenous chickens, especially in resource-limited settings has been reported [17,

18]. For this reason, it is necessary to monitor the distribution of AMR among different chicken

types not only to achieve treatment success but also to track the emergence of AMR pathogens

and possible spread to the environment and animal food products. Moreover, bacterial patho-

gens like Salmonella can develop biofilm structures (extracellular polymeric substances) and

multicellular properties, enabling them to better survive chemical compounds and antimicro-

bial agents [19]. Recent studies have reported a high prevalence of multi-drug resistant biofilm-

forming Salmonella serovars in poultry farms and processing facilities globally [20–24], suggest-

ing increased risks for recurring contamination of poultry products. The potential of pathogenic

bacteria including Salmonella species to form biofilms affects food safety even for products pre-

served in appropriate refrigerated storage [25]. Therefore, this study investigated the occurrence

of virulence and AMR determinants, and biofilm-forming potentials of Salmonella serovars in

intensively (layer and broiler) and semi-intensively reared (dual-purpose, indigenous) chickens

in the North West province, South Africa. The study hypothesized that the prevalence of AMR

and biofilm-forming potentials of Salmonella spp. would be higher in intensively reared com-

pared to extensively reared birds.
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2. Materials and methods

2.1 Sampling strategy

Prior to sample collection, 15 (5 broilers, 5 layers and 5 dual-purpose indigenous chickens)

poultry farms were identified and selected. The owners of the farms were approached to partic-

ipate in the study based on willingness. Ethical clearance for the study was obtained from the

North-West University AnimCare Research Ethics Committee (approval no. NWU-00503-

20-A5). Informed consent was sourced from the farmers through consent forms since no per-

mits were required. Data on antibiotic treatment history and related husbandry practices were

collected through a structured questionnaire (S1 File). The questionnaire elicited information

on poultry farmers’ demographic, husbandry practices, antibiotic use, and their knowledge of

Salmonella spp. The survey instrument was face and content validated prior to administration

by experts in the field of study. The reliability test of the instrument was carried out through

the test-re-test reliability procedure by administering the questionnaire to two (2) poultry

farmers at an interval of one week. The responses from the two administrations were then cor-

related and a high correlation coefficient of r = 0.80 was obtained. This confirmed the consis-

tency and reliability of the instrument. Furthermore, a multiple contact strategy was used to

eliminate sampling error and to ensure accuracy of responses gathered from the farmers. This

approach eliminated the risks of receiving socially desirable responses from the farmers.

The survey results showed that broiler chicken flocks (average size: 5000 birds) were all

raised intensively in housing units, most of which had foot baths for biosecurity (S2 File).

Layer flocks (average size: 1000 birds) were intensively raised in battery cages. Foot baths were

used at entrances of only two of the layer farms. Indigenous chicken flocks (average size: 250

birds) were raised semi-intensively with no biosecurity measures in place. Antibiotic use was

highest in broilers, followed by layers while no antibiotics were used in dual-purpose indige-

nous chickens. Broilers and layers were fed formulated commercial diets with antibiotic

growth promoters, while dual-purpose indigenous chickens mostly scavenged for their feed.

For microbiological analysis, the minimum sample size of 75 was determined to be ade-

quate for the study using a previously reported formular [26]. To achieve this, 5 samples were

collected from each farm.

2.2 Sample collection

A total of 75 faecal samples were collected from 15 poultry farms (5 layer, 5 broiler, and 5

indigenous dual-purpose chicken) in the Ngaka Modiri Molema District, North West prov-

ince, South Africa. The faecal samples were collected directly from the cloaca of five randomly

selected individual birds using sterile swabs containing multipurpose universal transport

medium. The swab samples were immediately placed in the tubes containing the multipurpose

universal transport medium and transported on ice to the Microbiology laboratory at the

North-West University, for bacterial analysis.

2.3 Salmonella isolation

At the laboratory, swabs were immediately rinsed in 10 mL of 1% (w/v) peptone-water. After

rinsing, 0.1 mL aliquots from the peptone-water were inoculated into tubes containing 10 mL

of Rappaport Vassiliadis (RV) broth medium and incubated at 42˚C for 48 hrs [27]. Following

enrichment, a loopful of the broth culture was streaked onto Salmonella-Shigella agar (SSA)

plates and aerobically incubated at 37˚C for 24 hrs. Lactose non-fermenting colonies without

black centres (potentially Shigella spp. and non-hydrogen sulphide producing Salmonella spp.)

and lactose-fermenting colonies with large black centres (potentially hydrogen sulphide
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producing Salmonella spp.) were randomly picked and purified on SSA. Two distinct pre-

sumptive isolates per sample were picked, thus a total of 150 presumptive Salmonella isolates

were used for further identification tests. All pure isolates were preserved in 60% (v/v) glycerol

(Merck, Johannesburg, SA) and stored at −80˚C for future use.

2.4 Genomic DNA extraction from presumptive isolates

Overnight cultures of presumptive isolates were prepared, and the genomic DNA (gDNA) was

extracted using Zymo Research Genomic DNATM–Tissue MiniPrep kit (Biolab, South Africa)

obtained from Inqaba Biotec, South Africa, following the manufacturer guidelines. The quality

and purity of gDNA extracted from the isolates was assessed using NanoDrop Lite 1,000 spec-

trophotometer (model: Thermo Fisher Scientific, USA). High quality gDNA samples were

stored at −80˚C for further analysis by PCR.

2.5 Molecular identification and confirmation of Salmonella isolates

Presumptive Salmonella isolates were subjected to Salmonella-specific PCR through amplifica-

tion of invA (284 bp), fliC (559 bp), and Prot6e (185 bp) genes using a DNA thermal cycler

(C1000 Touch™, BIO-RAD, South Africa) and oligonucleotides supplied by Inqaba Biotec. The

primer sequence for invA gene was used to confirm Salmonella genus while prot6e and fliC
genes were used to detect S. enteritidis and S. typhimurium, respectively [28]. This set of prim-

ers have been previously used to confirm the identity of the genus Salmonella and distinguish

between S. typhimurium and S. enteriditis strains from other Salmonella serotypes [29]. The

oligonucleotide primer sequences targeted genes, amplicon sizes and the PCR conditions

(annealing temperature) are listed in Table 1. The PCR reactions constituted of 12.5 μL of 2X

DreamTaq Green Master Mix, 0.5 μM of each primer, 1 μL of template DNA, and 11 μL

RNase-nuclease free PCR water. A no-template DNA tube was used as a negative control while

Salmonella Enteriditis (ATCC: 13076TM) and Salmonella Typhimurium (ATCC: 14028TM)

reference strains obtained from Sigma Aldrich, SA were used as positive control.

2.6 Detection of virulence genes

Polymerase chain reaction assays were performed to amplify spiC (309 bp), misL (400 bp), and

orfL (550 bp) virulence gene fragments. The primer sequences, targeted genes, amplicon sizes

as well as the annealing temperature are listed in Table 1. All the PCR reactions were prepared

in a final volume of 25 μL constituting of 12.5 μL of 2X DreamTaq Green Master Mix, 0.5 μM

of each primer, 1 μL of template DNA, and RNase free water. All amplifications were per-

formed using DNA thermal cycler (C1000 Touch™, BIO-RAD, South Africa). PCR amplicons

were held at -4˚C until electrophoresis was performed.

2.7 Antimicrobial susceptibility test

The Kirby-Bauer disc (Mast Diagnostics, UK) diffusion technique was used to determine the

antimicrobial susceptibility profile of all the Salmonella isolates [31]. The choice of selected

antibiotics was based on the standard recommendation by CLSI, particularly antibiotics that

are commonly used in the treatment of bacterial infections in both humans and animals. The

list of used antibiotics comprised of gentamicin (GM10 μg), amoxicillin (A10 μg), erythromy-

cin (E15 μg), chloramphenicol (C30 μg), tetracycline (T10 μg), trimethoprim (TM25 μg),

ampicillin (AP30 μg), trimethoprim-sulfamethoxazole (TS25 μg), and kanamycin (K30 μg)

[30]. The tested antibiotics belonged to 6 antimicrobial classes, which includes aminoglyco-

sides, tetracyclines, folate pathway antagonists, phenicols, penicillins, β-lactam combination
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agents. A loopful of confirmed Salmonella isolates was inoculated into sterile nuclease free

water to prepare a 0.5 MacFarland’s solution of competent exponential phase growth cells. Ali-

quots (0.1 mL) of these cells were evenly spread-plated onto Muller Hinton agar plates [32].

Discs impregnated with CLSI recommended concentrations of the antibiotics were evenly

placed on the inoculated plates and incubated aerobically at 37˚C for 18 hrs. Following incuba-

tion, antibiotic growth inhibition zone diameter around the disc was measured in mm and the

data was interpreted using CLSI (2023 version) guidelines. The isolates were classified as sensi-

tive (S), intermediate resistance (I), or resistant (R) to each antibiotic following CLSI criteria

[32, 34]. Escherichia coli ATCC 25922 was used as a reference strain because it is a recom-

mended strain for antimicrobial susceptibility test and its quality control guidelines permit

greater accuracy in interpreting AMR results [33, 34]. Percentage antibiotic resistance was cal-

culated, and multiple antibiotic resistance (MAR) phenotypes were generated for isolates that

were resistant to at least one agent in three or more antimicrobial categories [34, 35].

2.8 Detection of antimicrobial resistance genes

Genomic DNA of Salmonella extracted was used to detect antimicrobial resistance genes. All

confirmed Salmonella isolates were screened for the presence of the ant (3”)-la (526 bp), tet
(A) (210 bp), tet (B) (659 bp), sul1 (350 bp), and sul2 (720 bp) antibiotic resistance determi-

nants [30]. Primer sequences, target genes, amplicon sizes as well as PCR cycling conditions

for the different genes are listed in Table 2. Polymerase chain reactions were carried out in

total volumes of 25 μL each, comprising 12.5 μL of 2X DreamTaq Green Master Mix, 0.5 μM

of each primer, 1 μL of template DNA and RNase free water. Amplifications were performed

using DNA thermal cycler (C1000 Touch™, BIO-RAD, South Africa).

2.9 Phenotypic assessment of biofilm-formation

Microtiter plate assays were employed to assess the ability of Salmonella isolates to form bio-

film at different temperatures (4˚C, 25˚C, and 37˚C) over a 24-hour period. Triplicates of

10 μL aliquot of each overnight culture at 105 CFU inoculated into 190 μL of brain-heart infu-

sion broth per well were prepared and incubated [36]. Pseudomonas aeruginosa ATCC 27853

was used as a positive control because it is a strong biofilm-former. Biofilm-formation was

quantified by crystal violet (CV) staining and isolates were classified into none, weak,

Table 1. Sequence of oligonucleotide primers used in PCR confirmation of Salmonella species and detection virulence genes [28, 30].

Primers Sequences (50 − 30) Target gene Amplicon size (bp) Annealing temperature

S139 F: GTGAAATTATCGCCACGTTCGGGCAA InvA 284 51

S141 R: TCATCGCACCGTCAAAGGAACC

Fli15 F: CGGTGTTGCCCAGGTTGGTAAT fliC 559 55

Tym R: ACTCTTGCTGGCGGTGCGACTT

Prot6e-5 F: ATATGGTCGTTGCTGCTTCC Prot6e 185 55

Prot6e-6 R: CATTGTCCACCGTCACTTTG

spiC F:CCTGGATAATGACTATTGAT spiC 309 51

spiC R: AGTTTATGGTGATTGCGTAT

MisL F: GTCGGCGAATGCCGCGAATA misL 400 55

MisL R: GCGCTGTTAACGCTAATAGT

orfL F: GGAGTATCGATAAAGATGTT orfL 550 55

orfL R: GCGCGTAACGTCAGAATCAA

https://doi.org/10.1371/journal.pone.0310010.t001
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moderate, and strong biofilm-formers using automatic Enzyme-Linked Immunosorbent

Assay (ELISA) microtiter plate reader (MB-580, Zhengzhou, China) [37].

2.10 Electrophoresis of DNA and PCR products

Genomic DNA and PCR amplicons were all separated by electrophoresis on 1.5% (w/v) aga-

rose gel containing 0.001 μg/mL ethidium bromide using horizontal Pharmacia Biotech equip-

ment (model Hoefer HE 99X; Amersham Pharmacia Biotech, Sweden). A 100 bp DNA

molecular weight DNA marker (Thermo Fisher Scientific, South Africa) was used to confirm

the sizes of the amplicons. Each electrophoresis run was conducted at 100 V for 10 min and

later 80 V for 1 h using 1X TAE buffer (40 mM Tris, 1 mM EDTA and 20 mM glacial acetic

acid, pH 8.0). A ChemiDoc Imaging System (Bio-Rad ChemiDocTM MP Imaging System, UK)

was used to capture the images using Gene Snap software, version 6.0022. Agarose gel images

were analysed to determine gene sizes.

2.11 Statistical analysis

Optical density data were analysed using the General Linear Models procedure of Statistical

Analysis System (SAS) 2010. The treatments were analyzed using a 3 × 4 factorial treatment

arrangement in a completely randomized design according to the following model:

Yij ¼ mþ Biþ Tjþ ðB� TÞijþ Eijk

Where, Yij = optical density; μ = population mean; Bi = bird type; Tj = incubation tempera-

ture; (B × T)ij = interactive effect of bird type and incubation temperature; and Eijk = random

error associated with observation ijk, assumed to be normally and independently distributed.

Least squares means (LSMEANS) were compared using the probability of difference option in

the LSMEANS statement of SAS.

Proportional data (arising from discrete counts) were analysed using the multinomial logis-

tic regression procedure of SAS (2010). In the categorical variable ’bird type,’ the reference cat-

egory selected was broiler due to the reported extensive use of antibiotic growth promoters in

this group. Consequently, there was an anticipation of a higher likelihood of detecting antimi-

crobial resistance in broilers. For all statistical tests, significance was declared at P< 0.05.

Table 2. Sequences of oligonucleotide primers used for the detection of resistant antimicrobial genes in Salmonella isolates [30].

Antimicrobial agent Sequences (50– 30) Target gene Amplicon size (bp) Annealing temperature

Gentamicin F: GTGGATGGCGGCCTGAAGCC ant (3”)-la 526 60

R: ATTGCCCAGTCGGCAGCG

Tetracycline F: GCTACATCCTGCTTGCCTTC tet (A) 210 55

R: CATAGATCGCCGTGAAGAGG

F: TTGGTTAGGGGCAAGTTTTG tet (B) 659 55

R: GTAATGGGCCAATAACACCG

Sulfamethoxazole F: GCG CGG CGT GGG CTA CCT sul1 350 67

R: GATTTCCGCGACACCGAGACAA

F: CGG CAT CGT CAA CAT AACC sul2 720 52

R: GTG TGC GGA TGA AGT CAG

https://doi.org/10.1371/journal.pone.0310010.t002
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3. Results

3.1 Prevalence of Salmonella in different types of chickens

Thus, out of 150 isolates, 82 (55%) were confirmed to be Salmonella (Table 3, Fig 1). More

than half (51%) of the isolates were confirmed as S. typhimurium through amplification of the

fliC gene (Table 3, Fig 2). Only a small proportion (32%) of the isolates was confirmed as S.

enteritidis using the Prot6e gene PCR and the amplicons for representative isolates are shown

in Fig 3. A small proportion (17%) of the confirmed Salmonella isolates were not positive for

the fliC and Prot6e genes. The proportions of isolates positive for Salmonella species-specific

and virulence genes did not vary (p> 0.05) with bird type.

3.2 Antimicrobial resistance profiles

A total of 82 confirmed Salmonella isolates were subjected to antimicrobial sensitivity test

against a panel of 9 different antimicrobial agents (Table 4). Large proportions of the isolates

were most often resistant to erythromycin (62%) and tetracycline (59%). On the contrary,

smaller proportions of these isolates were resistant to trimethoprim (32%), amoxicillin (26%),

ampicillin (22%), trimethoprim- sulfamethoxazole (18%) and kanamycin (15%). In addition,

the isolates exhibited high susceptibility to chloramphenicol and gentamicin with 2% and 1%

resistance recorded, respectively. Despite that aminoglycoside such as gentamicin appeared

active in vitro against Salmonella isolates, it is not utilized clinically, hence it must be reported

as resistant according to CLSI (2023 version) standards. The proportion of Salmonella isolates

resistant to tested antibiotics were not influenced (p> 0.05) by the type of bird sampled.

Multiple antimicrobial resistance (MAR) phenotypes of isolates were generated (Table 5)

using abbreviations on the antibiotic discs. All observed phenotypes were given a specific anti-

biotypes codes (Ac) with a distinct number to differentiate between biotypes and they ranged

between Ac1 and Ac20. Phenotypes Ac1 (16%), Ac2 (10%), Ac4 (10%), Ac10 (13%), and Ac19

(10%) were dominant across isolates. Isolate phenotypes Ac14 –Ac18 were resistant to five or

more antibiotics. Phenotype Ac20 was resistant to the highest number (7) of antibiotics (ampi-

cillin, chloramphenicol, erythromycin, trimethoprim-sulfamethoxazole, tetracycline,

trimethoprim).

3.3 Detection of resistance genes

A total of 82 confirmed Salmonella isolates from different chicken types were subjected to

PCR, targeting ant (3”)-la, sul1, sul2, tet (A), and tet (B) antimicrobial resistance genes

(Table 6). Large proportions of the isolates possessed the ant (3”)-la (52%) and Tet (A) (46%)

resistance genes. The proportions of isolates carrying sul1 and sul2 resistance genes ranged

between 13% and 14% (see gene fragments in Figs 6 and 7, respectively). Agarose gel images of

Table 3. Proportions of isolates positive for Salmonella species-specific and virulence genes.

Percentage of isolates Virulence genes

Genus and species-specific genes

Bird type (%) N InvA fliC prot6e spiC misL orfL
Broilers 50 78 41 28 21 20 13

Layers 50 46 57 22 26 9 13

Indigenous 50 40 55 45 30 20 15

Total 150 55 49 30 26 16 14

Proportional data were analysed using the multinomial logistic regression procedure of SAS (2010)

https://doi.org/10.1371/journal.pone.0310010.t003
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the ant (3”)-la, tet (A), sul1, and sul2 gene fragments are shown in Figs 4–7, respectively. On

the other hand, only 9% of the isolates possessed tet (B) resistant gene determinants. The pro-

portion of isolates positive for antimicrobial resistance genes were not influenced (p> 0.05)

by bird type.

3.4 Virulence genes in Salmonella isolates

The 82 confirmed Salmonella isolates were further screened for the presence of three virulence

genes (spiC, misL, and orfL) using PCR. A moderate number (26%) of the isolates possessed

the spiC virulent gene (Table 3) whose gene fragments are shown in Fig 8. Only 16% of the iso-

lates harboured the misL virulent gene (Table 1) whose amplicons are shown in Fig 9. In addi-

tion, 14% of the isolates harboured the orfL virulent gene (see the gene fragments in Fig 10).

3.5 Phenotypic assessment of biofilm-formation

Only 69 of the 82 confirmed and preserved Salmonella stock cultures were still viable after

long-term storage at -80˚C. For this reason, 69 of the isolates were subjected to biofilm-forma-

tion analysis using microtiter plate assay. The results revealed that neither chicken type nor

incubation temperature influenced biofilm-formation among the tested Salmonella isolates.

Based on the biofilm-formation patterns observed, isolates were classified as none, weak, mod-

erate, or strong biofilm-forming strains. Regardless of incubation temperature, larger propor-

tions of the isolates (35 to 62%) were categorized as strong biofilm-formers. The proportion of

Salmonella isolates that did not form biofilm ranged between 0 and 35%, while those that had

moderate biofilm-forming capacity ranged between 0 and 20%. Between 4 and 35% of isolates

Fig 1. A 1.5% (w/v) agarose gel image depicting Salmonella species specific invA gene from confirmed isolates. Lane M = 100 bp DNA marker (Thermo Fisher

Scientific, South Africa); Lane 1 = invA gene fragment amplified from Salmonella enteriditis positive control strain (ATCC: 13076TM); Lanes 2–18 = Salmonella species

specific invA gene fragments amplified from the isolates; Lanes 19 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g001

Fig 2. A 1.5% (w/v) agarose gel image depicting Salmonella species specific fliC gene fragments from confirmed isolates. Lane M = 100 bp DNA marker (Thermo

Fisher Scientific, South Africa); Lane 11 = fliC gene fragment amplified from Salmonella typhimurium positive control strain (ATCC:14028TM); Lanes 1–10 and 12–17 =

Salmonella species specific fliC gene fragments amplified from the isolates; Lane 18 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g002
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were classified as weak biofilm-formers. The proportion of isolates that were able to form bio-

films were not influenced (p> 0.05) by bird type.

4. Discussion

4.1 Prevalence of Salmonella in different poultry species

A total of 150 isolates were obtained from 15 layer, broiler, and dual-purpose indigenous

chicken farms. Salmonella spp. identity was confirmed in 82 (55%) of the isolates by molecular

detection of invA gene fragments. Similar results have been reported in previous studies [6,

38]. The occurrence of Salmonella spp. in poultry is influenced by several factors such as geo-

graphic location, prevention/control and biosafety measures of flocks, farm-specific husbandry

practices, sampling season, and identification methods. In the current study, broilers had the

highest Salmonella prevalence rate (78%), followed by layers (46%) and indigenous chickens

(40%), as confirmed through PCR amplification of the invA gene. The observed variations in

the occurrence of Salmonella spp. across broilers, layers and indigenous chickens may be

attributed to the variation in management (biosecurity, hygiene, and sanitation) of the farms

[39]. Despite that broilers and layers are raised under strict biosecurity standards compared to

indigenous chickens, broilers had the highest occurrence rate of Salmonella spp. corroborating

previous findings [40, 41]. Salmonella enteritidis and S. typhimurium are the most problematic

zoonotic Salmonella serotypes that are responsible for serious human health infections globally

[42]. In South Africa, they are also the most common serotypes reported in food producing

animals including food products of animal origin [43, 44]. Confirmed Salmonella isolates were

further identified using Salmonella species-specific gene fragments fliC (S. typhimurium) and

prot6e (S. enteritidis). This analysis revealed that the prevalence of S. enteritidis and S. typhi-

murium serotypes was 49 and 30%, respectively. Only 21% of the confirmed Salmonella

Fig 3. A 1.5% (w/v) agarose gel image depicting Salmonella species specific Prot6e gene fragments amplified from confirmed isolates. Lane M = 100 bp DNA marker

(Thermo Fisher Scientific, South Africa); Lane 1 = Prot6e gene fragment amplified from Salmonella enteriditis positive control strain (ATCC: 13076TM); Lanes 2–16,

Salmonella species specific Prot6e gene fragments amplified from the isolates; Lane 17 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g003

Table 4. Proportion of isolates resistant to tested antibiotics. The superscript “a” indicate the percentage of Salmonella isolates that were resistant to the aminoglyco-

sides (gentamicin and kanamycin) and these was reported based on the CLSI standards which stipulate that the above antimicrobial agents should not be reported as sus-

ceptible since they are not effective clinically.

Percentage of isolates resistant to antibiotics

Bird type (%) N AP30 GM10a K30a C30 A10 E15 TS25 TM25 T10

Broilers 39 13 100 100 0 18 46 13 36 49

Layers 23 30 100 100 4 26 78 17 22 74

Indigenous 20 30 100 100 5 40 75 30 35 60

Total 82 22 100 100 2 26 62 18 32 59

Ampicillin (AP30); Gentamicin (GM10); Kanamycin (K30); Chloramphenicol (C30); Amoxicillin (A10); Erythromycin (E15); Trimethoprim-sulfamethoxazole (TS25);

Trimethoprim (TM25); Tetracycline (T10).

https://doi.org/10.1371/journal.pone.0310010.t004

PLOS ONE Virulence, multiple drug resistance, and biofilm formation in Salmonella species isolated from chickens

PLOS ONE | https://doi.org/10.1371/journal.pone.0310010 October 28, 2024 9 / 20

https://doi.org/10.1371/journal.pone.0310010.g003
https://doi.org/10.1371/journal.pone.0310010.t004
https://doi.org/10.1371/journal.pone.0310010


isolates were negative for the two tested species-specific genes, suggesting that they could be

other serotypes. The prevalence of S. typhimurium varied across layers (57%), broilers (41%),

and indigenous chickens (55%). On the other hand, S. enteritidis was detected mostly in indig-

enous chickens (45%), followed by broilers (28%) and layers (22%). The lower prevalence of

both S. typhimurium and S. enteritidis in broilers compared to layers and indigenous chickens

can be attributed to the strict biosecurity measures employed for broiler production [14]. Sal-
monella can infect chickens without any clinical signs, leading to compromised productivity

[45]. This highlights the importance of periodically screening chickens for the presence of Sal-
monella species to assess the risks and develop effective biosecurity measures to control their

Table 5. Antibiotic resistance phenotypes for Salmonella isolated from different chicken types.

Proportion (%)

Resistance phenotypes1 Broiler Layer Indigenous Total Antibiotypes Number of antibiotics MAR Index

SXT-W-TE 10 13 30 16 Ac1 3 0.33

E-W-TE 13 9 5 10 Ac2 3 0.33

K-E-TE 0 4 5 2 Ac3 3 0.33

AML-E-TE 5 17 10 10 Ac4 3 0.33

AMP-AML-TE 3 0 0 1 Ac5 3 0.33

AMP-C-AML 0 4 0 1 Ac6 3 0.33

K-E-TE 3 0 0 1 Ac7 3 0.33

AMP-SXT-W 0 4 0 1 Ac8 3 0.33

CN-C-E 0 4 0 1 Ac9 3 0.33

E-SXT-W-TE 8 13 25 13 Ac10 4 0.44

AML-E-W-TE 3 0 0 1 Ac11 4 0.44

AMP-AML-E-TE 5 4 5 5 Ac12 4 0.44

K-AML.E-TE 8 0 0 4 Ac13 4 0.44

AML-E-SXT-W-TE 3 9 20 9 Ac14 5 0.56

AMP-AML-SXT-W-TE 0 0 5 1 Ac15 5 0.56

AMP-AML-E-W-TE 0 0 5 1 Ac16 5 0.56

AMP-K-AML.E-TE 0 0 15 4 Ac17 5 0.56

K-E-SXT-W-TE 3 0 0 1 Ac18 5 0.56

AMP-AML-E-SXT-W-TE 0 17 20 10 Ac19 6 0.67

AMP-C-AML-E-SXT-W-TE 0 4 0 1 Ac20 7 0.78

1Phenotypes were generated using abbreviations that occur in the antibiotic discs.

N = 39, AMP, ampicillin; AML, amoxicillin; C, chloramphenicol; CN, gentamicin; E, erythromycin; K, kanamycin; STX, trimethoprim-sulfamethoxazole; TE,

tetracycline; W, trimethoprim

https://doi.org/10.1371/journal.pone.0310010.t005

Table 6. Proportion of isolates positive for antimicrobial resistance genes.

Percentage of isolates positive for

resistance genes

Bird type (%) N ant (3”)-la sul1 sul2 tet (A) tet (B)

Broilers 39 36 15 26 49 8

Layers 23 65 17 30 43 9

Indigenous 20 55 10 10 45 10

Total 82 52 14 13 46 9

Gentamicin (ant (3”)-la); Tetracycline (tet (A) and tet (B)); Sulfamethoxazole (sul1 and sul2). Proportional data were

analysed using the multinomial logistic regression procedure of SAS (2010)

https://doi.org/10.1371/journal.pone.0310010.t006
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spread. Such interventions will reduce the incidence of Salmonella in poultry resulting in

greater productivity and food safety as well as reduced public health concerns.

4.2 Antimicrobial resistance profiles of Salmonella isolates

Misuse or uncontrolled use of antibiotics in poultry production for growth promotion and

prophylaxis has significantly contributed to the development of antimicrobial resistance

among bacterial pathogens, including Salmonella [46]. Therefore, it is necessary to assess the

antimicrobial resistance profile of isolates against commonly used antibiotics to develop more

effective treatment and control strategies [47]. The isolates showed high resistance to erythro-

mycin (62%), tetracycline (59%), and trimethoprim (32%). The observed high prevalence of

resistance to certain drugs such as tetracyclines can be attributed to their common use in both

animals and humans driven by affordability and accessibility, particularly in developing Afri-

can countries [48, 49]. In comparison, a lower proportion of the isolates (15–26%) was resis-

tant to amoxicillin, ampicillin, trimethoprim-sulfamethoxazole, and kanamycin, drugs that are

not frequently used in the study area [30]. Other antibiotics such as ampicillin and amoxycillin

are drugs of choice against Salmonellosis, hence the observed resistance may be attributed to

their frequent use [50]. The lowest proportions of resistant isolates were observed for chloram-

phenicol (2%) and gentamicin (1%) antibiotics, reflecting the uncommon use of both drugs in

the study area. Although. Aminoglycosides (gentamicin) may appear active in vitro against Sal-
monella spp. but are not effective clinically, hence it should not be reported as susceptible [32].

Fig 4. A 1.5% (w/v) agarose gel image depicting the ant (3”)-la resistance gene fragments from confirmed Salmonella isolates. Lane M=100 bp DNA marker (Thermo

Fisher Scientific, South Africa); Lanes 1–18, ant (3”) resistance gene fragments amplified from the Salmonella isolates; Lane 19 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g004

Fig 5. A 1.5% (w/v) agarose gel image depicting the tet (A) resistance gene from confirmed Salmonella isolates. Lane M=100 bp DNA marker (Thermo Fisher

Scientific, South Africa); Lanes 1–18, tet (A) resistance gene fragments amplified from the isolates; Lane 19 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g005
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Interestingly, a high number of isolates from indigenous chickens showed resistance to several

antibiotics and harboured resistance genes, suggesting potential of indirect transmission of

antibiotic resistance. This phenomenon is more commonly reported in developing countries,

particularly in poultry production settings characterized by limited resources and inadequate

biosecurity measures [15, 18]. Additionally, bacterial pathogens disseminate resistance

through horizontal gene transfer [51], and that may contribute to the spread of antimicrobial

resistance to the environment and ultimately to indigenous chickens, particularly in areas with

poor livestock waste management. In addition, the direct interaction or close proximity of the

extensively reared indigenous chickens with other animals such as cattle, broilers, layers, and

wild birds could have contributed to the observed findings.

Multiple drug resistance (MDR) is another growing global problem because it reduces dis-

ease treatment options [52]. Salmonella isolates assessed in the current study exhibited a high

rate of MDR to three or more tested antibiotics classes with MAR index ranging from 0.33 to

0.78. Interestingly, the MAR index values were all above the 0.2 threshold, suggesting that the

high-risk source of Salmonella pathogens contamination is where antimicrobial agents are fre-

quently used [53]. This confirms that antibiotic use in poultry production farms does

Fig 6. A 1.5% (w/v) agarose gel image depicting the sui1resistance gene fragments from confirmed Salmonella isolates. Lane M=100 bp DNA marker (Thermo Fisher

Scientific, South Africa); Lanes 1–10 and 12–17, sui1 resistance gene fragments amplified from confirmed Salmonella isolates; Lane 11 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g006

Fig 7. A 1.5% (w/v) agarose gel image depicting the sui2 resistance gene fragments from confirmed Salmonella isolates. Lane M = 100 bp DNA marker (Thermo

Fisher Scientific, South Africa); Lanes 1–15, sui2 resistance gene fragments amplified from confirmed Salmonella isolates; Lane 16 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g007
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contribute to the spread of resistant Salmonella pathogens. Several factors contribute to MDR

development, including unregulated access to antibiotics and/or lack of compliance regarding

the amount and type of antimicrobial agents used in poultry production and human medicine

[54]. Some Salmonella isolates were resistant to more than five antibiotics, a major cause for

concern given that diseases caused by such pathogens often have fatal outcomes [55]. Infec-

tions caused by MDR pathogens have severely limited treatment options thus putting animal

and human lives at risks [38]. The adverse effects of MDR pathogens are a severe concern in

developing countries due to inadequate health systems and limited resources to control them

[55]. The detection of multiple resistant Salmonella strains in the three chicken types surveyed

in this study has serious public health implications through food chain contamination [39].

4.3 Detection of resistance genes

The observed high rates of isolates AMR is not surprising, since most poultry producers in

South Africa have unlimited over the counter access to most antimicrobials [56]. Among the

82 Salmonella isolates in the current study, 52, 46, 13, and 14% were positive for the ant (3”)-
la, tet (A), sui1, and sui2 resistant gene determinants, respectively. The results obtained from

the analysis of resistance genes are consistent with the findings of the phenotype analysis,

Fig 8. A 1.5% (w/v) agarose gel image depicting the spiC virulence gene fragments from confirmed Salmonella isolates. Lane M=100 bp DNA marker (Thermo Fisher

Scientific, South Africa); Lanes 1–15, Salmonella species spiC virulent gene fragments; Lane 16 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g008

Fig 9. A 1.5% (w/v) agarose gel image depicting the misL virulence gene from confirmed Salmonella isolates. Lane M=100 bp DNA marker (Thermo Fisher Scientific,

South Africa); Lanes 2–14 = Salmonella species misL virulent gene fragments from confirmed Salmonella isolates; Lane 15 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g009
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especially in the case of tetracycline (59%) and trimethoprim-sulfamethoxazole (18%). Nota-

bly, there is a partial alignment between genotypic antibiotic resistance (AMR) and phenotypic

antibiotic resistance results, suggesting the potential existence of silent antimicrobial resistance

genes, particularly tet (A), tet (B) and ant (3”)-la [57]. This phenomenon, also known as cryptic

genes, has been observed in earlier studies [58–60]. The presence of silent antimicrobial resis-

tance genes poses a new challenge in the battle against antimicrobial resistance, as it implies a

risk not only with phenotypically resistant pathogens but also with antimicrobial-susceptible

pathogens harbouring cryptic genes, as reported previously [61]. This dual risk emphasizes the

complexity and potential covert nature of antimicrobial resistance. Despite the above, a small

number of the isolates (9%) possessed the tet (B) resistance gene. Inexpensive and accessible

antimicrobials such as tetracyclines tend to be abused in animal production and human medi-

cine thus contributing to the development and spread of AMR [49].

Additionally, 56% of the isolates also harboured one of the aminoglycosides resistance

genes called ant (3”)-la gene. The above findings corroborate previous findings [62]. In the

current study, the ant (3”)-la gene was highly prevalent in layers (65%), followed by indigenous

chickens (55%) and broilers (36%) among Salmonella isolates that had not shown phenotypic

resistance to gentamicin. This suggests the potential presence of silent antimicrobial resistance

genes among Salmonella isolates, posing a potential health risk for poultry producers in the

study area. Although the ant (3”)-la gene has been reported in several pathogenic bacterial

strains, its prevalence in Salmonella isolates in Africa is not well-documented. In addition,

genes harbouring resistance to sulfamethoxazole (sul1 and sul2) were also detected in Salmo-
nella isolates, including those resistant to trimethoprim-sulfamethoxazole. The occurrence of

resistant Salmonella spp. suggests a need for alternatives to antibiotics [63], as well as treatment

options in the event of disease outbreaks. Poultry production in low to medium income coun-

tries should be supported with alternative therapies against AMR pathogens, such as bacterio-

phage therapy.

4.4 Prevalence of virulence genes among Salmonella isolates

Virulence contributes to the invasiveness, pathogenicity, survival, and proliferation of Salmo-
nella spp. [38]. Genetic determinants responsible for virulence help Salmonella to invade and

destroy epithelial cells in host intestines and pave way for the colonization of other cell lines

Fig 10. A 1.5% (w/v) agarose gel image depicting the orfL virulence gene from confirmed Salmonella isolates. Lane M = 100 bp DNA marker (Thermo Fisher

Scientific, South Africa); Lanes 2–15 = orfL virulence gene fragments from confirmed Salmonella isolates; Lane 16 = Negative control.

https://doi.org/10.1371/journal.pone.0310010.g010
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[64]. In the current study, all three screened virulence genes belonged to different Salmonella
pathogenicity islands, named SP1-2, SP1-3, and SP1-4 encoding for spiC, misL, and orfL genes,

respectively. The most prevalent virulent gene was the spiC, found in 26% of the tested isolates,

however, the role of spiC gene in the pathogenesis of Salmonella is yet to be unravelled [65].

The other virulent genes detected were the misL (16%) and the orfL (14%). Both genes have

been associated with the survival of Salmonella in host macrophages during an infection [66].

The identification of virulent and AMR Salmonella pathogens raises concerns for both public

health and the poultry industry. Antimicrobial-resistant pathogens not only lead to challeng-

ing-to-treat infections but also exacerbate infections and elevate the risks of mortality [67].

The detection of virulent genes in Salmonella strain at the farm level demonstrates the role

played by healthy chickens in spreading pathogenic Salmonella strains to the environment or

food chain leading to public health concerns [12, 68].

4.5 Phenotypic assessment of biofilm-formation

Biofilm-formation is a survival strategy used by pathogenic bacteria to evade harsh environ-

ments such as antibiotics and disinfectants while enhancing microorganisms’ pathogenicity

[69]. Bacterial biofilm-formation increases the burden of resistant pathogens and threatens

food safety, especially when hygiene standards are compromised during food production and

processing [70]. In the current study, isolates from different chicken types had similar biofilm-

forming capacity. Most isolates were strong biofilm-formers, regardless of incubation temper-

ature. These findings underscore the threat to food safety posed by the potential of Salmonella
to form biofilms. Given that meat products are stored in cold facilities to mitigate foodborne

poisoning incidents in humans, the observed robust biofilm formation by isolates, even at low

temperatures (4˚C) typical of meat storage, raises significant concerns for food safety and pub-

lic health. This heightened biofilm-forming nature at low temperatures increases the risk of

meat contamination during storage, potentially leading to elevated morbidity and mortality

cases, particularly among children and immunocompromised individuals [71]. This outcome

necessitates the search for effective control strategies to ensure food safety and public health.

5. Conclusions

In conclusion, bird type or husbandry practices had no significant effects on the prevalence of

AMR Salmonella spp. or resistance determinants. The detection of virulent pathogenic and

AMR Salmonella spp. in the different chicken types suggest a public health risk and raises a

concern for the South African poultry industry. This is because Salmonella is the most preva-

lent foodborne pathogen globally, frequently associated with the contamination of poultry

products and diseases of economic and public health importance in poultry and humans. The

occurrence of pathogenic and MDR Salmonella spp. in chickens suggests the need for careful

evaluation of antibiotic use in all poultry production systems. Furthermore, it highlights the

need to search for alternatives to prophylactic and therapeutic antibiotics such as

bacteriophages.
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