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Abstract
1.	 Fire is a major selective force on arid grassland communities, favoring traits such 

as the smoke-induced seed germination response seen in a wide variety of plant 
species. However, little is known about the relevance of smoke as a cue for plants 
beyond the seedling stage.

2.	 We exposed a fire-adapted savanna tree, Vachellia (=Acacia) drepanolobium, to 
smoke and compared nutrient concentrations in leaf and root tissues to unex-
posed controls. Experiments were performed on three age cohorts: 2-year-old, 
9-month-old, and 3-month-old plants.

3.	 For the 2-year-old plants exposed to smoke, carbon and nitrogen concentrations 
were lower in the leaves and higher in the roots than controls. Less pronounced 
trends were found for boron and magnesium.

4.	 In contrast, smoke-exposed 3-month-old plants had lower root nitrogen concen-
trations than controls. No significant differences were found in the 9-month-old 
plants, and no significant shifts in other nutrient concentrations were observed 
between plant tissues for any of the three age cohorts.
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1  | INTRODUC TION

In arid grassland ecosystems, fire is a major selective pressure 
on plant traits (reviewed in ref. Bond & Keeley, 2005), influenc-
ing community structure (Axelrod, 1985; Sankaran et al., 2008; 
Van Langevelde et al., 2003) and nutrient cycling (Anderson et al., 
2007; Cech et al., 2008; Knapp & Seastedt, 1986). The key to the 
maintenance of the savanna biome state is that fires can act as a 
balancing force between trees and grasses (Sankaran et al., 2005; 
Staver et al., 2011). While there is a long history of human addi-
tions to natural patterns of burning, such as for hunting, grazing 

livestock, and planting crops (Marchant, 2010; Martins de Melo & 
Saito, 2012; Silva et al., 2006), in more recent decades, fire sup-
pression and increased grazing are shifting the balance in favor of 
trees (Stevens et al., 2016; Venter et al., 2018). This woody en-
croachment is a land management challenge, resulting in reduced 
forage for livestock and augmentation of tick populations (Negasa 
et al., 2014) and shifting landscape-scale biogeochemistry and hy-
drology (Asner et al., 2004). Both the balance of vegetation types 
(Hagos & Smit, 2005) and fire frequency (Jensen et al., 2001; Wan 
et al., 2001) influence savanna nutrient dynamics, with implica-
tions for ecological stability and human use (Venter et al., 2017). 

5.	 Synthesis: Our findings are consistent with smoke-induced translocation of nutrients 
from leaves to roots in 2-year-old V. drepanolobium. This could represent a novel 
form of fire adaptation, with variation over the course of plant development. The 
translocation differences between age cohorts highlight the need to investigate 
smoke response in older plants of other species. Accounting for this adaptation 
could better inform our understanding of savanna community structure and nutri-
ent flows under fire regimes altered by anthropogenic land use and climate change.

K E Y W O R D S
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F I G U R E  1   The ant-acacia symbiosis. 
(a) Vachellia drepanolobium being burned in 
a controlled fire in the Kenya Long-Term 
Exclosure Experiment plots, at the Mpala 
Research Centre in Laikipia, Kenya. (b) 
The swollen stipular thorns form ‘domatia’ 
that house the defensive ant symbionts 
and provide further defense against 
herbivores. (c) An opened domatium. At 
Mpala, four symbiotic ant species coexist 
in the landscape (though rarely within 
individual trees): Crematogaster mimosae, 
Crematogaster nigriceps, Tetratponera 
penzigi, and Crematogaster sjostedti. 
Trees used for this experiment at the 
Harvard Museum of Comparative Zoology 
greenhouse did not house ants. Photos 
by (a) Duncan Kimuyu and (b, c) Brendan 
Dean

(a)

(b) (c)
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Understanding the impact of fire on these ecosystems is the key to 
management recommendations.

We examine a potential fire response in one species contributing 
to woody encroachment (Kimaro & Treydte, 2021), the East African 
Whistling Thorn Acacia, Vachellia (=Acacia) drepanolobium (Figure 1). 
Vachellia drepanolobium make up >95% of trees on the black cotton 
clay soil savannas of East Africa and have been increasing in density 
since the 1970s (Niboye, 2010). These trees have a symbiotic rela-
tionship with several species of ants, providing domatia and food 
(Figure 1) in return for protection against herbivores (Hocking, 1970; 
Palmer et al., 2010). Fires in this region occur approximately every 
five years (i.e. prior to suppression; Heady, 1960), and both the ants 
and plants have adaptations to facilitate post-fire recovery. Some ant 
species are able to detect smoke from up to two kilometers away 
and respond by evacuating to the soil or to holes within the trunk, 
where survival is enhanced (Cochard, 2004; Kimuyu et al., 2014; 
Sensenig et al., 2017). Vachellia drepanolobium, even when burned 
to the ground (top-killed), typically resprout from the root crown 
and quickly produce thick foliage and domatia that can house their 
ant defenders (Okello et al., 2001, 2008), a pattern also observed in 
the related ant-associated tree, Vachellia zanzibarica (Cochard et al., 
2008). Quick resprouting could help V. drepanolobium outcompete 
other plants and speed recolonization by their ant symbionts, whose 
protection is potentially critical given that herbivores are attracted 
to new foliage in post-burn areas (LaMalfa et al., 2019; Palmer et al., 
2000; Zavala & Holdo, 2005).

For plant species capable of resprouting, the nutrient storage 
capacity of a large root system and deep taproot are key to surviv-
ing multiple top-kills by fire before being able to grow tall enough 
to escape this “fire trap” (McCulley et al., 2004; Peguero & Espelta, 
2011; Wigley et al., 2008). Many factors can affect the state of a 
plant's energy reserves. Nutrient limitation, leaf senescence in ad-
vance of a cold or dry season, and leaf flushing can all trigger plant-
wide shifts in nutrient transportation and storage (Chidumayo, 1994; 
Hermans et al., 2006; Kobe et al., 2005; Tolsma et al., 1987; Vergutz 
et al., 2012). Savanna plants demonstrate seasonal patterns of nutri-
ent accumulation and translocation, with stores built up in the roots 
over the course of the rainy season and then diminished following 
recovery from dry season fires (Laclau et al., 2002; McIvor, 1981). On 
shorter time scales, many plants translocate nutrients – in particular, 
carbon from the leaves and nitrogen from the roots – in daily fluxes 
from sources to sinks (Ourry et al., 1996; Siebrecht et al., 2003). Thus, 
within the constraints of tissue capacities to act as sources and sinks, 
plant nutrient allocation is malleable, changing daily, seasonally, and 
under stressful conditions in response to a wide range of stimuli.

Plant biomass allocation (e.g. the ratio of root mass to shoot mass) 
can be influenced by the detection of volatiles released by neigh-
boring plants (Ninkovic, 2003). Volatile communication is common 
in plants and can trigger a variety of responses. Competing plants 
release volatiles that inhibit cell growth and DNA synthesis (Nishida 
et al., 2005), while plants under attack from herbivores or pathogens 
emit compounds that elicit shifts in the direct and indirect defenses 
of others nearby, often within only a couple of days (reviewed in ref. 

Heil & Karban, 2010). One volatile stimulus that merits further study, 
especially for fire-adapted plants such as V. drepanolobium, is smoke.

In advance of a fire, smoke can serve as a cue to seeds that 
the landscape will soon be newly cleared of competition and rich 
with nutrients, creating ideal germinating conditions (Allen et al., 
1969; Kanz, 2001). Compounds isolated from smoke, such as the 
butanolide KAR1 (3-methyl-2H-furo[2,3-c]pyran-2-one) (Flematti 
et al., 2004; Keeley & Pausas, 2018; Van Staden et al., 2004), trig-
ger seed germination in numerous fire-adapted plants, including at 
least two Vachellia species – V. robusta and V. hebeclada (reviewed 
in ref. Kulkarni et al., 2007; Van Staden et al., 2000). In seedlings 
– plants between one week and 3 months old – studies have shown 
increased root and shoot growth in response to smoke treatments, 
both for species adapted to fire and those that are not (reviewed in 
ref. Light et al., 2009).

For established plants, unlike for seeds and seedlings, smoke 
is more likely a threatening cue that aboveground tissues will soon 
be destroyed and nutrients such as nitrogen volatilized (Chen et al., 
2010; Cook, 1994). Yet the field of plant smoke response has been 
largely restricted to measuring seed germination rates and seed-
ling growth and vigor. Research has focused on crop and non-
fire-adapted species, and experimental protocols often employ an 
aqueous solution containing smoke compounds in lieu of smoke it-
self (e.g. reviews by Van Staden et al., 2000 and Light et al., 2009). 
In contrast to experiments examining volatile-induced herbivore 
defenses (e.g. Baldwin & Schultz, 1983; Glinwood et al., 2009), to 
our knowledge no studies have explicitly tested smoke responses of 
older, more mature plants of fire-adapted species and assessed their 
ability to respond physiologically to smoke volatiles.

We exposed V.  drepanolobium of various ages to smoke: a 
3-month-old cohort similar in age to past studies on smoke effects 
in other plants and two older cohorts of 9-month-old and 2-year-old 
trees. If, like their ant symbionts, the plants are able to detect smoke 
and recognize it as a sign of approaching fire (Sensenig et al., 2017), 
we hypothesized that the plants would respond by translocating nu-
trients away from vulnerable aboveground tissue into the insulated 
roots. By storing nutrients in their root system and preventing them 
from being lost to fire, V. drepanolobium would have the resources 
to quickly resprout following fire and thus rapidly reacquire its ant 
symbionts and increase its likelihood of escaping the fire trap (Clarke 
& Knox, 2009; LaMalfa et al., 2019; Schutz et al., 2009).

2  | METHODS

2.1 | Rearing, selection, and randomization

Seeds of V.  drepanolobium were collected in the Kajiado North 
District of Kitengela, Kenya (36° 49’ E, 1° 23’ S, 1660 m elevation) 
and germinated at the Arnold Arboretum greenhouses in Boston, 
MA. Seeds were planted in Metro-Mix® 852 soil in three different 
cohorts and grown into 3-month-old, 9-month-old, or 2-year-old 
plants. Experiments were conducted in late November 2018 with 
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the 2-year and 3-month cohorts (planted July 2016 and August 
2018, respectively) and again in December 2019 with the 9-month 
cohort (planted Mach 2019). All plants were moved to the Harvard 
Museum of Comparative Zoology Laboratory greenhouse (6.3 miles 
due north from the Arnold Arboretum) for testing, with a period of 
at least a few weeks for acclimation to the new location. The 2-year 
and 3-month cohorts had thirty-six plants each, and the 9-month 
cohort had 50 plants. The plants were size-matched within cohorts, 
using stem diameter as an index of overall size to reduce variation 
between the two treatment groups. Plants were then randomly as-
signed to a treatment protocol: smoke exposure or control. All plants 
were stored in the control greenhouse, which was kept closed to 
prevent stray smoke volatiles from entering, before they underwent 
their designated exposure and processing protocols.

2.2 | Exposure protocol

One greenhouse was designated for controls and another for smoke 
exposure, each containing a tent within. The tents used were the 
Wakeman six-person water-resistant outdoors dome model, with 
dimensions of 10 ft by 10 ft at their base and 6 ft at their maximum 
internal height. These were made of 190T polyester with polyure-
thane coating, fiberglass structural poles, and a polyethylene floor 
shell. After unpacking, tents were initially aired out in full sunlight for 
several days before use. The tents served to reduce smoke dissipa-
tion over the course of the treatment period. Identical tents were as-
signed to either smoke or control treatments and consistently used 
for these treatments throughout.

One plant per treatment group was put inside a tent at a time. 
The smoke treatment tents were filled with smoke using a Breville 
wood smoke culinary infuser (BSM600SIL model, “The Smoking 
Gun”) and dried-and-mulched stem tissue obtained from prun-
ing other V. drepanolobium in the greenhouse. We maintained the 
amount of smoke in the tents at a qualitatively consistent level 
through one to three repeated applications over the course of an 
hour. The two greenhouses, one with the smoking tents and the 
other with the controls, were separated by a hallway that was con-
tinuously exhausted by a construction-site exhaust fan to prevent 
any residual smoke contamination. Researchers were kept constant 
between treatments to avoid exposing control plants to any resid-
ual smoke volatiles clinging to clothing. After one hour of expo-
sure, both the control and the smoked plants were removed from 
their tents and left for 24 h in the same greenhouse room where 
they had undergone treatment. This time period was deemed suffi-
ciently long for any fire-related responses have taken place to their 
fullest extent, while soon enough for changes to still be detectable 
and not have reverted. The plants for that set of exposures were 
then removed from the greenhouse and immediately processed 
for nutrient analysis, using the processing protocol detailed below. 
During the entire experiment, the greenhouse temperature was 
maintained at about 26.7°C, simulating the natural environment of 
V. drepanolobium.

2.3 | Processing and drying protocol

Post-treatment, plants were processed manually, and each was 
sorted into leaves, stems, and roots. Aboveground and belowground 
tissues were cut apart, leaves were removed from stems, and roots 
were removed from soil and washed. Remaining water from wash-
ing was then absorbed using paper towels. The plant tissues were 
weighed to obtain the wet mass of each tissue type per plant. The 
root biomass was an underestimate due to non-negligible quanti-
ties of root tissue lost during the soil washing stage. However, the 
amount lost is likely consistent across all plants within a cohort. The 
tissues were then enclosed in paper towel packets or glassine en-
velopes, dried at 40°C for around 24 h, and then weighed again to 
obtain the dry mass. The dried tissues were packaged and sent to an 
agricultural analysis company for nutrient data.

2.4 | Plant nutrient analysis

The composition of plant macronutrients and micronutrients were 
analyzed by Spectrum Analytic (Washington Court House, Ohio), 
where samples were dried further, homogenized to a fine powder, 
and analyzed for composition of the following elements: nitrogen 
(N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), 
sulfur (S), boron (B), copper (Cu), iron (Fe), manganese (Mn), zinc (Zn) 
and sodium (Na). Spectrum Analytic reported high variability in the 
accuracy of Fe measurements; so these data were excluded from our 
analyses. In the case of the 2-year plants from the first experiment in 
2018, where sufficient tissue was available, percent carbon (C) was 
also analyzed. Elemental composition was expressed in the form of 
percent total dry mass by weight for macronutrients and parts per 
million for micronutrients. We derived the total mass of each ele-
ment per plant by summing leaf and root nutrient concentrations. In 
the case of the 3-month seedlings, only 10 individuals per treatment 
group had sufficient tissue for nutrient analyses, and there was insuf-
ficient dry mass of root tissue for nutrient analyses beyond percent 
nitrogen. Similarly, for the two younger cohorts, insufficient quanti-
ties of stem tissue precluded accurate nutrient measurements; thus, 
this tissue was excluded from our analyses.

2.5 | Data analysis

For each of the three age cohorts (2-year, 9-month, and 3-month) 
and for each tissue (leaf and root), Welch's two-sample t-test was 
used to compare nutrient concentrations between smoke treatment 
and control. The Benjamini-Hochberg correction for multiple testing 
was used to determine significance, with a false discovery rate of 
Q = 0.05 and m = the number of tests (Benjamini & Hochberg, 1995).

To examine differences in baseline conditions between each 
of the age cohorts, control plant leaf and root nutrient concentra-
tions were summed to obtain a measure of whole-plant nutrition. 
Dry masses of the tissues were summed to obtain total mass, and 
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root-shoot ratios were calculated by dividing the dry mass of root 
tissue by the dry mass of leaf tissue for each plant. Pairwise com-
parisons between the 2-year and 9-month cohorts were made using 
Welch's t-test and by calculating fold change (Δfold). Due to the 
small amount of tissue available from the 3-month cohort, only total 
mass, root-shoot ratio, and total nitrogen could be calculated. For 
these three measures, additional pairwise comparisons were made 
with the 9-month cohort.

To investigate the possibility that changes in tissue nutrient 
concentration were due to altered photosynthetic or root uptake 
rates, rather than translocation, whole-plant properties were also 
compared between smoke and control cohorts within each cohort. 
Welch's t-test was used to determine whether whole-plant nutrient 
concentrations differed between treatments and thus whether an 
external nutrient source or sink should be considered.

All statistical analyses were performed using R Version 4.0.0 
(Hunter, 2007; Kassambara, 2020; R Core Team, 2020). Violin plots 
were created using the R packages ‘ggplot2’ (Wickham, 2016) and 
‘ggsignif’ (Ahlmann-Eltze, 2019).

3  | RESULTS

3.1 | Tissue nutrient concentrations

The carbon and nitrogen concentration in tissues differed signifi-
cantly between control and smoke-exposed 2-year V. drepanolobium 

in a manner consistent with adaptive translocation in response to 
impending fire (Table 1). For the 2-year cohort, smoke-exposed 
plants had 10% lower leaf carbon (t = 3.33, p < .001) and 16% higher 
root carbon (t = −3.58, p < .001) than controls. The 2-year-old plants 
had 31% lower leaf nitrogen (t = 3.82, p <  .001) and 126% higher 
root nitrogen (t = −8.12, p < .001) than controls (Figure 2). By con-
trast, the smoke-exposed 3-month-old plants 14% lower root nitro-
gen (t = 4.44, p < .001) than controls (Table 1). This cohort also had 
a non-significant trend of 6% higher leaf nitrogen (t  =  −1.98, n.s., 
p =  .07), an opposing pattern from that observed in the 2-year-old 
plants. The 9-month-old plants did not show significant tissue nutri-
ent differences between treatments (Table 1).

In the 2-year cohort, boron was 21% higher in the root tissue of 
smoke-exposed plants (t = −4.398, p < .001), but not correspondingly 
lower in the leaves (t = 0.13, n.s., p = .90). There were non-significant 
trends toward higher magnesium in both the leaves (t = −2.18, n.s., 
p =  .04) and the roots (t = −2.086, n.s., p =  .05) of smoke-exposed 
plants (Table 1). No other nutrients showed significant differences 
between treatments, and no other significant differences were 
found for the 9-month and 3-month cohorts (Table 1).

3.2 | Whole-plant differences

For control plants, total dry biomass increased significantly with 
age, from 3 months old (0.89 g) to 9 months old (11.1 g) to 2 years 
old (28.3 g; Table A1). The average ratio of root mass to shoot mass 

TA B L E  1   Comparison of leaf and root nutrient content of smoke-exposed and control Vachellia drepanolobium for each of the three age 
cohorts

Age cohort 2-year-old 9-month-old 3-month-old

Tissue Leaf (n = 18) Root (n = 18) Leaf (n = 22) Root (n = 19) Leaf (n = 18) Root (n = 10)

Nutrient t-value (p) t-value (p) t-value (p) t-value (p) t-value (p) t-value (p)

C (%) 3.33* (<.001) −3.58* (.002) – – – –

N (%) 3.82* (<.001) −8.12* (<.001) −0.04 (.68) −0.17 (.86) −1.98 (.07) 4.44* (<.001)

P (%) −0.57 (.57) −2.43 (.02) 2.36 (.02) 1.39 (.17) −1.18 (.26) –

K (%) −0.04 (.97) −1.53 (.14) −0.24 (.81) −0.30 (.76) −0.64 (.53) –

Ca (%) −0.73 (.47) −2.08 (.05) −0.92 (.37) 0.46 (.65) −2.89 (.01) –

Mg (%) −2.09 (.05) −2.18 (.04) −1.01 (.32) −1.76 (.09) 0.01 (.99) –

S (%) 0.57 (.57) −0.30 (.76) −0.25 (.81) 0.01 (.99) −2.18 (.05) –

Mn (ppm) −1.12 (.27) −0.83 (.42) −0.73 (.47) −0.56 (.58) 0.04 (.97) –

B (ppm) 0.13 (.90) −4.40* (<.001) 0.28 (.78) 0.39 (.70) −1.77 (.10) –

Zn (ppm) −0.72 (.48) −2.33 (.03) 0.84 (.41) −1.42 (.17) −0.07 (.95) –

Cu (ppm) −0.03 (.98) −0.43 (.67) −0.34 (.74) −1.57 (.13) 0.07 (.95) –

Na (ppm) −1.33 (.19) −0.19 (.85) −0.45 (.66) −0.32 (.75) 1.50 (.16) –

Note: The number of plants per treatment (n) varied between tissues when some samples were not viable for nutrient analysis. Carbon percentage 
was only measured for the 2-year cohort. All percentages are percent masses. Welch's t test was used to compare between treatments; positive 
t-values signify nutrient concentration was higher in the control group, and negative t-values signify it was higher in the smoke-exposed group. 
Significance was calculated using the Benjamini-Hochberg correction for multiple testing (m = 13 for 2-year cohort and m = 12 for the 3-month 
and 9-month cohorts, Q = 0.05), leading to an initial p-value significance cut-off of  .003. Significant differences are shown by bolded and asterisked 
values. The 3-month-old plants had insufficient root tissue to measure any nutrient other than nitrogen. Nutrient analyses were performed by 
Spectrum Analytic.
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(mean root–shoot ratio) of 2-year-old plants was 6.25, significantly 
larger than that of the two younger cohorts (0.85 for 9-month and 
0.81 for 3-month) (Table A1). There were no strong correlations be-
tween root–shoot ratio and total mass or total nutrient concentration 
(all r2 < 0.1). The younger cohorts had higher concentrations of most 
nutrients in their tissues, with the exception of sodium and calcium, 
which were higher in the 2-year-old plants, and boron and zinc, which 
showed no significant differences between cohorts (Table A1).

Within each age cohort, whole-plant (leaf plus root) nutrient 
concentration did not differ significantly between treatments after 
correcting for multiple testing (Table A2). However, the 2-year-old 
smoke-exposed plants showed non-significant trends toward higher 
total nitrogen (t = −2.87, n.s., p =  .009) and magnesium (t = −2.99, 
n.s., p = .006) than the controls (Table A2).

4  | DISCUSSION

These results provide novel evidence that 2-year-old V. drepanolo-
bium respond to smoke by translocating carbon and nitrogen from 
the leaves to the roots. Shoot-to-root translocation of macronu-
trients may reduce nutrient losses to fire and aid resprouting of 
top-killed V. drepanolobium. Thus, this behavior could represent an 
inducible fire adaptation in plants. Future research should address 
the timescale over which this response occurs, beyond our finding 
that such a difference was measurable 24 h after smoke exposure. 

Due to the destructive nature of collecting tissues for nutrient 
analyses, time series data were not feasible for these experiments. 
Techniques involving spectroscopy are a promising possibility for 
monitoring changes in leaf tissue nitrogen concentrations over time, 
thus elucidating both the speed of the response and its duration fol-
lowing smoke exposure (e.g. Blackmer et al., 1994).

The purpose of translocation may differ between nutrients. 
Nitrogen-fixing plants like Vachellia are known to trade sugars to 
symbiotic rhizobial bacteria and mycorrhizal fungi in exchange for 
nutrients like nitrogen and phosphorus, which can be limiting in sa-
vanna ecosystems (Ahiabor et al., 2007; Dodd et al., 1990; Sanginga 
et al., 1996). Carbon translocation, in the form of sugars, could fuel 
this interaction in anticipation of regrowth, while nitrogen transloca-
tion would reduce its loss to volatilization and the subsequent fixa-
tion needs. Boron and magnesium, which showed clearly directional 
trends in response to smoke, are in turn important nutrients for sugar 
translocation (Gauch & Dugger, 1953; Hermans & Verbruggen, 2005). 
Anticipatory nutrient translocation may elucidate past findings in a 
South African savanna showing that plant nutrient stoichiometry 
and composition were surprisingly resilient to fire and the associated 
changes in soil nutrient distribution (Pellegrini et al., 2015).

The remaining nutrients showed no significant translocation in 
the 2-year cohort, which could reflect their integration into unalter-
able tissues and structures, low phloem mobility (Bukovac & Wittwer, 
1957), or a translocation timescale different from 24  h. Seasonal 
translocation patterns are known to vary between nutrients for 

F I G U R E  2   Comparison of tissue 
nutrient concentrations between smoke-
exposed and control 2-year-old plants. 
Nutrient concentrations were measured 
in leaf tissue (a, c) and root tissue (b, d). 
Sample size per treatment was n = 18 
plants. Control plants are shown in light 
gray, smoke-exposed plants in dark gray. 
All percentages are percent masses. 
Asterisks indicate significant differences 
between treatments, using the Benjamini-
Hochberg correction for multiple testing 
(Q = 0.05, m = 13, significance cut-off 
of P = .003). Nutrient analyses were 
performed by Spectrum Analytic
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different savanna species (Tolsma et al., 1987). There were also no 
significant shifts in whole-plant nutrient concentrations between 
the smoke and control treatments for any age cohort. This suggests 
no changes in photosynthetic rate or root nutrient uptake occurred 
in response to smoke (Table A2).

The youngest cohort of V. drepanolobium showed the opposite 
pattern of smoke-induced translocation from the oldest cohort. 
While small tissue quantities prevented the analysis of most of the 
nutrients, nitrogen was significantly lower in the roots and non-
significantly higher in the leaves, consistent with its movement from 
belowground to aboveground tissues in these 3-month-old plants. 
Previous studies have found that newly germinated seedlings re-
spond to volatile compounds present in smoke with increased root 
and shoot growth (reviewed in Light et al., 2009). If, like in related 
Vachellia species, smoke is a cue to germinate and grow, these 
3-month-old plants may be exhibiting a residual form of this re-
sponse. Furthermore, small V. drepanolobium are much more likely to 
die in a fire than larger individuals (Okello et al., 2008), undermining 
any selective pressure for young plants to translocate nutrients be-
lowground in anticipation of resprouting.

We did not find significant nutrient translocation in the 
9-month-old plants. This may reflect an intermediate point in the 
ontogeny of nutrient translocation responses, lying somewhere be-
tween the root-to-shoot response of the 3-month-old plants and the 
shoot-to-root response of the 2-year-old plants. A developmental 
shift could relate to reproduction, as the 2-year cohort were flow-
ering, while the younger cohorts appeared to be pre-reproductive. 
Alternatively, a large root–shoot ratio could be necessary for shoot-
to-root translocation, acting as a sink for drawing down nutrients 
from the leaves. The 9-month cohort, despite having around ten 
times the mass of the 3-month cohort, still had an average root–shoot 
ratio of less than 1.0 (Table A1). Without a substantial belowground 
sink, the plant may be unable to form a gradient to translocate nu-
trients. Finally, although the 2-year-old plants had higher concen-
trations of sodium and calcium, which can influence translocation 
capacity (e.g. Gauch & Dugger Jr., 1953; Subbarao et al., 2003), the 
younger cohorts had higher nutrient concentrations generally (Table 
A1), and this may have modulated their root–shoot development as 
well as their ability to send nutrients to the roots (Ericsson, 1995). In 
studies of nutrient withdrawal from senescing leaves, trees growing 
in nutrient-rich environments had reduced translocation efficiency 
compared to those growing in nutrient-poor environments (Kobe 
et al., 2005; Vergutz et al., 2012).

This study provides a first steppingstone toward understanding 
how older plants use smoke as a cue for fire-adaptive physiological 
shifts, and how these responses might vary during development. On 
the organismal level, our findings raise questions about the mecha-
nisms and timing of smoke-induced nutrient translocation in V. dre-
panolobium and motivate a search for related responses in other 
fire-adapted species. At a community level, symbiotic ants and soil 
microbial and fungal communities could influence and be influenced 
by this response, highlighting the need for field-based experiments. 
Seasonality, rainfall, and natural gradients in soil nutrients across 

the landscape also likely interact with and modulate plant nutrient 
translocation. On the ecosystem level, given the changing density 
of V. drepanolobium on East African savannas, accounting for these 
findings may alter predictions of how landscape-scale nutrient flows 
will respond to anthropogenic fire management or woody encroach-
ment. Much remains to be discovered of inducible smoke responses 
in plants beyond the seed and young seedling stages.
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APPENDIX 1

TA B L E  A 1   Comparison between age cohorts of whole-plant properties in control plants

Variable 2-year (n = 18) 9-month (n = 19) Δfold t-value (p) 3-month (n = 10) t-value (p)

Mass (g) 28.3 11.09 2.6 5.56* (<.001) 0.89 10.81* (<.001)

Root/shoot 6.25 0.85 7.4 6.32* (<.001) 0.81 0.30* (.767)

N (%) 4.46 7.18 0.6 −17.16* (<.001) 6.57 3.35* (.003)

P (%) 0.35 1.25 0.3 −17.26* (<.001) – –

K (%) 2.36 4.52 0.5 −11.56* (<.001) – –

Ca (%) 3.47 2.74 1.3 4.11* (<.001) – –

Mg (%) 0.47 0.89 0.5 −17.99* (<.001) – –

S (%) 0.62 0.92 0.7 −9.00* (<.001) – –

Mn (ppm) 135 181.79 0.7 −2.76* (.001) – –

B (ppm) 111.06 104.25 1.1 0.94 (.021) – –

Zn (ppm) 90.78 104.57 0.9 −1.88 (.188) – –

Cu (ppm) 17.27 26.88 0.6 −5.18* (<.001) – –

Na (ppm) 7331.67 1664.32 4.4 11.77* (<.001) – –

Note: Leaf and root nutrient concentrations were summed and compared between 2-year, 9-month, and 3-month control cohorts. Welch’s t-tests 
were used for pairwise comparisons of the 2-year and 9-month cohorts, and additional pairwise tests were run between the 9-month and 3-month 
cohorts for mass, root–shoot ratio, and nitrogen. The Benjamini-Hochberg correction for multiple testing was used to determine significance 
(Q = 0.05, m = 13), leading to an initial p-value significance cut-off of .003. Fold change (Δfold) compares the 2-year and 9-month cohorts; Δfold >1 
signifies a greater value for the 2-year cohort, while Δfold <1 signifies a greater value for the 9-month cohort. Significant differences are shown by 
bolded and asterisked values. Nutrient analyses were performed by Spectrum Analytic.

TA B L E  A 2   Comparison of whole-plant properties between smoke-exposed and control trees for each age cohort

Age cohort

2-year-old (n = 18) 9-month-old (n = 19) 3-month-old (n = 10)

t-value (p) t-value (p) t-value (p)

Mass (g) 0.61 (.55) 1.15 (.26) 2.48 (.02)

Root/shoot 1.28 (.21) 0.25 (.81) 0.46 (.65)

C (%) 0.55 (.59) – –

N (%) −2.87 (.009) −0.02 (.99) 0.46 (.65)

P (%) −1.97 (.06) 2.36 (.025) –

K (%) −0.52 (.61) −0.38 (.71) –

Ca (%) −1.55 (.13) −0.76 (.45) –

Mg (%) −2.99 (.006) −1.53 (.14) –

S (%) 0.21 (.84) −0.17 (.87) –

Mn (ppm) −1.14 (.26) −1.08 (.29) –

B (ppm) −0.47 (.64) 0.48 (.64) –

Zn (ppm) −2.04 (.05) −1.17 (.26) –

Cu (ppm) −0.25 (.80) −1.90 (.07) –

Na (ppm) −1.09 (.28) −0.44 (.66) –

Note: There were n individual plants per treatment (smoke or control). Nutrients shown are the sum of leaf and root concentrations within each 
treatment group. All percentages are percent masses. Carbon (C) was only measured for the 2-year-old plants. Due to the small mass in the 3-month 
cohort, whole-plant concentrations could not be calculated beyond nitrogen. Welch’s t-test was used to compare between experimental treatments. 
The Benjamini-Hochberg procedure was used to determine significance (Q = 0.05, m = 14 for 2-year, m = 13 for 9-month), leading to a significance 
cut-off of 0.003. No significant differences were found. Nutrient analyses were performed by Spectrum Analytic.


